Varijacija fizičkih i mehaničkih osobina betona po visini

  • Mohamed Sadoun Univerzitet Mustafa Stamboli, Građevinski fakultet, Odsek za građevinarstvo, Laboratorija za proučavanje konstrukcija i mehanike materijala, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0008-2314-9402
  • Cheikh Zemri Univerzitet Mustafa Stamboli, Građevinski fakultet, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-9519-9475
  • Khaled Benmahdi Univerzitet Mustafa Stamboli, Građevinski fakultet, Odsek za građevinarstvo, Laboratorija za proučavanje konstrukcija i mehanike materijala, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8244-5817
  • Nacer Rahal Univerzitet Mustafa Stamboli, Građevinski fakultet, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-0400-8360
Ključne reči: beton, poroznost, kompresivna snaga, modul elastičnosti, permeabilnost, elevacija

Sažetak


Uvod/cilj: Materijali kao što su beton, malter i cementne paste postali su ključni u različitim oblastima konstrukcija, struktura i građevinarstva. U svetu se godišnje koristi oko sedam milijardi kubnih metara betona. Obično se smatra da je beton homogeni meterijal, ali, s obzirom na njegova reološka svojstva usled mogućih heterogenih pojava segregacije i curenja, to nije uvek slučaj

Metode: Ispitivane su fizičke i mehaničke karakteristike betonskog stuba, kao i njegova deformacija po visini. Ispitivanja su obuhvatila merenje apsolutne i prividne gustine, poroznosti, kapilarne apsorpcije, propustljivosti, brzine propagacije, kompresivne snage, kao i statičkog i dinamičkog modula elastičnosti. Korišćene su standardne metode ispitivanja bez razaranja (sklerometar, ultrazvuk, itd.) na seriji tačaka lociranih na različitim nivoima ispitivanih epruveta. 

Rezultati: Pokazano je da promene u visini stuba utiču na fizička i mehanička svojstva betona, tako što ih pojačavaju ili smanjuju (kao, na primer, na poroznost, apsorptivnost, propustljivost, kompresivnu snagu i statički i dinamički modul elastičnosti). Ove promene uzorkovane su različitim faktorima, poput svojstava betona prilikom njegovog spravljanja (npr. vibracija i umrežavanja) i klimatskih uslova tokom konstrukcije.

Zaključak: Rezultati ovog rada naglašavaju značaj iznijansiranog pristupa ispitivanju i proceni varijacija svojstava betona time što uzimaju u obzir višestruki uticaj promena visine stuba.

Reference

-ASTM. 2010. ASTM C39/C39M-09: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM, 04.02, December 31. Available at: https://doi.org/10.1520/C0039_C0039M-09.

-ASTM. 2016. ASTM C597-09: Standard Test Method for Pulse Velocity Through Concrete. ASTM, 04.02, May 27. Available at: https://doi.org/10.1520/C0597-09.

-ASTM. 2020. ASTM C1585-13: Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM, 04.02, September 22. Available at: https://doi.org/10.1520/C1585-13.

Attolou, A., Belloc, A. & Torrenti, J.M. 1989. Méthodologie pour une nouvelle protection du béton visà-vis de la dessiccation. Bulletin des liaisons Ponts et Chaussées, 164, pp.85-86.

Balayssac, J.P., Detriche, C.H. & Grandet, J. 1993. Intérêt de l'essai d'absorption d'eau pour la caractérisation du béton d'enrobage. Materials and Structures, 26, pp.226-230. Available at: https://doi.org/10.1007/BF02472615.

El Mabchour, F.E., Abouchadi, H., Zeriab Es-sadek, M. & Taha-Janan, M. 2020. Theoretical and Numerical Contribution for Prediction of the Mechanical Properties of a Randomly Distributed Reinforcement in the Matrix. International Review of Mechanical Engineering (IREME), 14(5). Available at: https://doi.org/10.15866/ireme.v14i5.19150.

Galan, A. 1982. Détermination de la résistance à la compression du béton d'après la vitesse transversale de propagation des ultrasons et les méthodes combinées qui en découlent. Matériaux et Construction, 15, pp.127-133. Available at: https://doi.org/10.1007/BF02473574.

Giaccio, G. & Giovambattista, A. 1986. Bleeding: Evaluation of its effects on concrete behaviour. Materials and Structures, 19, pp.265-271. Available at: https://doi.org/10.1007/BF02472109.

Hall, C. 1989. Water sorptivity of mortars and concretes: A review. Magazine of Concrete Research, 41(147), pp.51-61. Available at: https://doi.org/10.1680/macr.1989.41.147.51.

-Institute for Standardization of Serbia. 2019. SRPS EN 12390-3:2019: Testing hardened concrete - Part 3: Compressive strength of test specimens [online]. Available at: https://iss.rs/en/project/show/iss:proj:62276 [Accessed: 25 November 2023].

Kallel, H., Carré, H., Laborderie, C., Masson, B. & Tran, N.C. 2018. Evolution of mechanical properties of concrete with temperature and humidity at high temperatures. Cement & Concrete Composites, 91, pp.59-66. Available from: Available at: https://doi.org/10.1016/J.CEMCONCOMP.2018.04.014.

Lafhaj, Z., Goueygou, M., Djerbi, A. & Kaczmarek, M. 2006. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cement and Concrete Research, 36(4), pp.625-633. Available at: https://doi.org/10.1016/j.cemconres.2005.11.009.

Lydon, F.D. & Balendran, R.V. 1986. Some observations on elastic properties of plain concrete. Cement and Concrete Research, 16(3), pp.314-324. Available at: https://doi.org/10.1016/0008-8846(86)90106-7.

Mani, M., Bouali, M.F., Kriker, A. & Hima, A. 2021. Experimental characterization of a new sustainable sand concrete in an aggressive environment. Frattura ed Integrità Strutturale, 15(55), pp.50-64. Available at: https://doi.org/10.3221/IGF-ESIS.55.04.

Mehta, P.K. & Monteiro, P.J.M. 2014. Concrete: Microstructure, Properties, and Materials, 4th Edition. New York: McGraw-Hill [online]. Available at: https://www.accessengineeringlibrary.com/content/book/9780071797870 [Accessed: 25 November 2023]. ISBN: 9780071797870.

Nehar, K.C. & Benamara, D. 2021. Experimental study and modeling of the mechanical behavior of recycled aggregates-based high-strength concrete. Frattura ed Integrità Strutturale, 15(56), pp.203-216. Available at: https://doi.org/10.3221/IGF-ESIS.56.17.

Ollivier, J.-P. & Torrenti, J.-M. 2008. La structure poreuse des béton et les propriétés de transfert. In: Ollivier, J.-P. & Vichot, A. (Eds.) La durabilité des bétons, Chapter 3. ResearchGate [online]. Available at: https://www.researchgate.net/publication/290158099_La_structure_poreuse_des_beton_et_les_proprietes_de_transfert [Accessed: 25 November 2023].

-RILEM TC 49-TFR. 1984. Testing methods for fibre reinforced cement based composites. Materials and Structures, 17(102), pp.441-456 [online]. Available at: https://www.rilem.net/publication/publication/208?id_papier=5426 [Accessed: 25 November 2023].

Shi, X., Xie, N., Fortune, K. & Gong, J. 2012. Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials, 30, pp.125-138. Available at: https://doi.org/10.1016/j.conbuildmat.2011.12.038.

Słowik, M. 2021. The role of aggregate granulation on testing fracture properties of concrete. Frattura ed Integrità Strutturale, 15(58), pp.376-385. Available at: https://doi.org/10.3221/IGF-ESIS.58.27.

Teng, S., Divsholi, B.S., Lim, T.Y.D. & Gjørv, O.E. 2014. Concrete with Very High Resistance to Chloride Ingress. Concrete International, 36(5), pp.30-36 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=51686931 [Accessed: 25 November 2023].

Zhang, C., Zhang, Y., Yang, W., Yin, J. & Zhang, T. 2022. Study on Evolution of the Thermophysical and Mechanical Properties of Inner Shaft Lining Concrete during Construction Period. Applied Sciences, 12(19), art.number:10141. Available at: https://doi.org/10.3390/app121910141.

Zhang, D., Lu, A.-h., Wang, X., Xia, Y., Gong, S.-y., Sun, L., Zuo, R.-f. & Dong, Y. 2021. Study on Mechanical Properties and Damage Evolution of High-Porosity Concrete under Cyclic Loading and Unloading. Advances in Civil Engineering, 2021, art.ID:6594889 Available at: https://doi.org/10.1155/2021/6594889.

Zhang, M.-h. & Li, H. 2011. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Construction and Building Materials, 25(2), pp.608-616 Available at: https://doi.org/10.1016/j.conbuildmat.2010.07.032.

Objavljeno
2024/03/05
Rubrika
Originalni naučni radovi