Variations of physical and mechanical properties of concrete with the height

  • Mohamed Sadoun Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0008-2314-9402
  • Cheikh Zemri Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0000-0002-9519-9475
  • Khaled Benmahdi Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria https://orcid.org/0000-0002-8244-5817
  • Nacer Rahal Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0002-0400-8360
Keywords: concrete, porosity, compressive strength, modulus of elasticity, permeability, elevation

Abstract


Introduction/purpose: Concrete, mortar, and cement pastes are materials that have become central in various fields of construction, structures, and civil engineering. About 7 billion cubic meters of concrete are implemented. Concrete is generally considered a homogeneous material, but that is not always the case given its rheological behavior, which can be due to heterogeneous phenomena of segregation and bleeding.

Methods: The study tested a concrete column's physical and mechanical characteristics and deformation in elevation. The tests included measuring absolute and apparent density, porosity, capillary absorption, permeability, speed of propagation, compressive strength, and static and dynamic modulus of elasticity. For this purpose, the standards of non-destructive testing (sclerometer, ultrasound, etc.) were used to take the average of a series of points located at different levels of the element to be tested.

Results: The results indicate that changes in the column's height affect its physical and mechanical properties, either increasing or decreasing them (such as porosity, absorbency, permeability, compressive strength, and the static and dynamic modulus of elasticity). These changes are influenced by various factors, including the inherent properties of the concrete implementation (such as vibration and curing) and the climate conditions during construction.

Conclusion: The findings of this study emphasize the importance of a nuanced approach to testing and evaluating variations in concrete properties by taking into account the multifaceted impact of changes in column height.

References

-ASTM. 2010. ASTM C39/C39M-09: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM, 04.02, December 31. Available at: https://doi.org/10.1520/C0039_C0039M-09.

-ASTM. 2016. ASTM C597-09: Standard Test Method for Pulse Velocity Through Concrete. ASTM, 04.02, May 27. Available at: https://doi.org/10.1520/C0597-09.

-ASTM. 2020. ASTM C1585-13: Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM, 04.02, September 22. Available at: https://doi.org/10.1520/C1585-13.

Attolou, A., Belloc, A. & Torrenti, J.M. 1989. Méthodologie pour une nouvelle protection du béton visà-vis de la dessiccation. Bulletin des liaisons Ponts et Chaussées, 164, pp.85-86.

Balayssac, J.P., Detriche, C.H. & Grandet, J. 1993. Intérêt de l'essai d'absorption d'eau pour la caractérisation du béton d'enrobage. Materials and Structures, 26, pp.226-230. Available at: https://doi.org/10.1007/BF02472615.

El Mabchour, F.E., Abouchadi, H., Zeriab Es-sadek, M. & Taha-Janan, M. 2020. Theoretical and Numerical Contribution for Prediction of the Mechanical Properties of a Randomly Distributed Reinforcement in the Matrix. International Review of Mechanical Engineering (IREME), 14(5). Available at: https://doi.org/10.15866/ireme.v14i5.19150.

Galan, A. 1982. Détermination de la résistance à la compression du béton d'après la vitesse transversale de propagation des ultrasons et les méthodes combinées qui en découlent. Matériaux et Construction, 15, pp.127-133. Available at: https://doi.org/10.1007/BF02473574.

Giaccio, G. & Giovambattista, A. 1986. Bleeding: Evaluation of its effects on concrete behaviour. Materials and Structures, 19, pp.265-271. Available at: https://doi.org/10.1007/BF02472109.

Hall, C. 1989. Water sorptivity of mortars and concretes: A review. Magazine of Concrete Research, 41(147), pp.51-61. Available at: https://doi.org/10.1680/macr.1989.41.147.51.

-Institute for Standardization of Serbia. 2019. SRPS EN 12390-3:2019: Testing hardened concrete - Part 3: Compressive strength of test specimens [online]. Available at: https://iss.rs/en/project/show/iss:proj:62276 [Accessed: 25 November 2023].

Kallel, H., Carré, H., Laborderie, C., Masson, B. & Tran, N.C. 2018. Evolution of mechanical properties of concrete with temperature and humidity at high temperatures. Cement & Concrete Composites, 91, pp.59-66. Available from: Available at: https://doi.org/10.1016/J.CEMCONCOMP.2018.04.014.

Lafhaj, Z., Goueygou, M., Djerbi, A. & Kaczmarek, M. 2006. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cement and Concrete Research, 36(4), pp.625-633. Available at: https://doi.org/10.1016/j.cemconres.2005.11.009.

Lydon, F.D. & Balendran, R.V. 1986. Some observations on elastic properties of plain concrete. Cement and Concrete Research, 16(3), pp.314-324. Available at: https://doi.org/10.1016/0008-8846(86)90106-7.

Mani, M., Bouali, M.F., Kriker, A. & Hima, A. 2021. Experimental characterization of a new sustainable sand concrete in an aggressive environment. Frattura ed Integrità Strutturale, 15(55), pp.50-64. Available at: https://doi.org/10.3221/IGF-ESIS.55.04.

Mehta, P.K. & Monteiro, P.J.M. 2014. Concrete: Microstructure, Properties, and Materials, 4th Edition. New York: McGraw-Hill [online]. Available at: https://www.accessengineeringlibrary.com/content/book/9780071797870 [Accessed: 25 November 2023]. ISBN: 9780071797870.

Nehar, K.C. & Benamara, D. 2021. Experimental study and modeling of the mechanical behavior of recycled aggregates-based high-strength concrete. Frattura ed Integrità Strutturale, 15(56), pp.203-216. Available at: https://doi.org/10.3221/IGF-ESIS.56.17.

Ollivier, J.-P. & Torrenti, J.-M. 2008. La structure poreuse des béton et les propriétés de transfert. In: Ollivier, J.-P. & Vichot, A. (Eds.) La durabilité des bétons, Chapter 3. ResearchGate [online]. Available at: https://www.researchgate.net/publication/290158099_La_structure_poreuse_des_beton_et_les_proprietes_de_transfert [Accessed: 25 November 2023].

-RILEM TC 49-TFR. 1984. Testing methods for fibre reinforced cement based composites. Materials and Structures, 17(102), pp.441-456 [online]. Available at: https://www.rilem.net/publication/publication/208?id_papier=5426 [Accessed: 25 November 2023].

Shi, X., Xie, N., Fortune, K. & Gong, J. 2012. Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials, 30, pp.125-138. Available at: https://doi.org/10.1016/j.conbuildmat.2011.12.038.

Słowik, M. 2021. The role of aggregate granulation on testing fracture properties of concrete. Frattura ed Integrità Strutturale, 15(58), pp.376-385. Available at: https://doi.org/10.3221/IGF-ESIS.58.27.

Teng, S., Divsholi, B.S., Lim, T.Y.D. & Gjørv, O.E. 2014. Concrete with Very High Resistance to Chloride Ingress. Concrete International, 36(5), pp.30-36 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=51686931 [Accessed: 25 November 2023].

Zhang, C., Zhang, Y., Yang, W., Yin, J. & Zhang, T. 2022. Study on Evolution of the Thermophysical and Mechanical Properties of Inner Shaft Lining Concrete during Construction Period. Applied Sciences, 12(19), art.number:10141. Available at: https://doi.org/10.3390/app121910141.

Zhang, D., Lu, A.-h., Wang, X., Xia, Y., Gong, S.-y., Sun, L., Zuo, R.-f. & Dong, Y. 2021. Study on Mechanical Properties and Damage Evolution of High-Porosity Concrete under Cyclic Loading and Unloading. Advances in Civil Engineering, 2021, art.ID:6594889 Available at: https://doi.org/10.1155/2021/6594889.

Zhang, M.-h. & Li, H. 2011. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Construction and Building Materials, 25(2), pp.608-616 Available at: https://doi.org/10.1016/j.conbuildmat.2010.07.032.

Published
2024/03/05
Section
Original Scientific Papers