Rezonantni prenos toplote tokom forsirane konvekcije nanofluida Al2O3 u horizontalnom kanalu sa hladnjakom

Ključne reči: nanofluid, rezonancija, prenos toplote, hladnjak, konvekcija, Strohalov broj

Sažetak


Uvod/cilj: Stalni napredak u tehnologijama elektronskih uređaja doveo je do povećanih gustina električne energije što proizvodi znatne količine toplote tokom njihovog rada. Efikasno upravljanje toplotom je suštinsko za održavanje optimalnih performansi, produžavanje veka trajanja uređaja, kao i za sprečavanje kvarova uzrokovanih toplotom. Tradicionalne metode hlađenja, na primer vazduhom i tečnošću, nisu više u stanju da prate povećane potrebe za hlađenjem. Zato primena nanofluida, kao novog rashladnog sredstva, u poslednje vreme  dobija na značaju.

Metode: Cilj ove studije jeste da odredi široki opseg frekvencija za koje je prenos toplote maksimalan tokom hlađenja devet elektronskih komponenti postavljenih na horizontalni kanal pomoću nanofluida Al2O3. Ova pojava se naziva rezonantni prenos toplote i  do nje dolazi kada se frekvencija spoljašnje prinude (pulsiranja ili oscilacije) poklapa sa prirodnom frekvencijom konvektivnog toka nanofluida. Metoda konačnih zapremina korišćena je u rešavanju vodeće jednačine. Razmatrana su dva slučaja: uniformni i pulsni ulazni protok. Elektronske komponente predstavljaju blokove koji se greju i nalaze se na podjednakom rastojanju jedni od drugih.

Rezultati: Pokazano je da je protok nestabilan za kritični Rejnoldsov broj Re≈2000 nanofluida Al2O3 sa frekvencijom kao Strohalovim brojem St=1,2 i koncentracijom frakcija od 0,10, što odgovara brzini protoka od 0,211 m/s i dominantnoj frekvenciji od fr=34 Hz.

Zaključak: Povećani prenos toplote izračunava se kao brzina Nuseltovog broja pulsnog protoka sa Nuseltovim brojem ravnomernog protoka. Povećana brzina prenosa toplote  može se postići 30–70% unutar opsega Strohalovog broja St=[0,2–1,2],   što odgovara opsegu frekvencije fr =[12–34] Hz.

Reference

Abchouyeh, M.A., Fard, O.S., Mohebbi, R. & Sheremet, M.A. 2019. Enhancement of heat transfer of nanofluids in the presence of sinusoidal side obstacles between two parallel plates through the lattice Boltzmann method. International Journal of Mechanical Sciences, 156, pp.159-169. Available at: https://doi.org/10.1016/j.ijmecsci.2019.03.035.

Afrid, M. & Zebib, A. 1990. Oscillatory three‐dimensional convection in rectangular cavities and enclosures. Physics of Fluids A: Fluid Dynamics, 2(8), pp.1318-1327. Available at: https://doi.org/10.1063/1.857582.

Bar-Cohen, A., Wang, P. & Rahim, E. 2007. Thermal management of high heat flux nanoelectronic chips. Microgravity Science and Technology, 19, pp.48-52. Available at: https://doi.org/10.1007/BF02915748.

Bar-Cohen, A. 1983. Thermal Frontiers in the Design and Packaging of Microelectronic. Equipment Mechanical Engineering, 150, art.number:53 [online]. Available at: https://cir.nii.ac.jp/crid/1570572699153144192 [Accessed: 02 January 2024].

Bouttout, A. 2023. Forced Convection during Cooling of Power Supply Box using Pulsation Flow with Piezoelectric Fan. IEEJ Transactions on Electrical and Electronic Engineering, 18(6), pp.865-875. Available at: https://doi.org/10.1002/tee.23800.

Bouttout, A., Benissaad, S. & Bessaïh, R. 2014. Numerical Study of Forced Convection in a Horizontal Channel with Heated Blocks Due to Oscillation of Incoming Flow. Numerical Heat Transfer, Part A: Applications, 65(6), pp.584-600. Available at: https://doi.org/10.1080/10407782.2013.836013.

Brinkman, H.C. 1952. The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics, 20(4), art.number:571. Available at: https://doi.org/10.1063/1.1700493.

Choi, S.U.S. & Eastman, J.A. 1995. Enhancing thermal conductivity of fluids with nanoparticles. In: International mechanical engineering congress and exhibition, San Francisco, CA, USA, November 12-17 [online]. Available at: https://www.osti.gov/biblio/196525 [Accessed: 02 January 2024].

Farhanieh, B., Herman, Č. & Sundén, B. 1993. Numerical and experimental analysis of laminar fluid flow and forced convection heat transfer in a grooved duct. International Journal of Heat and Mass Transfer, 36(6), pp.1609-1617. Available at: https://doi.org/10.1016/S0017-9310(05)80070-5.

Furukawa, T. & Yang, W.-J. 2003. Thermal-fluid flow in parallel boards with heat generating blocks. International Journal of Heat and Mass Transfer, 46(26), pp.5005-5015. Available at: https://doi.org/10.1016/S0017-9310(03)00357-0.

Greiner, M. 1991. An experimental investigation of resonant heat transfer enhancement in grooved channels. International Journal of Heat and Mass Transfer, 34(6), pp.1383-1391. Available at: https://doi.org/10.1016/0017-9310(91)90282-J.

Maxwell, J.C. 2010. A Treatise on Electricity and Magnetism, Volume 1. Cambridge University Press. Available at: https://doi.org/10.1017/CBO9780511709333.

Mohammed, H.A., Alawi, O.A. & Wahid, M.A. 2015. Mixed convective nanofluid flow in a channel having backward-facing step with a baffle. Powder Technology, 275, pp.329-343. Available at: https://doi.org/10.1016/j.powtec.2014.09.046.

Moon, J.W., Kim, S.Y. & Cho, H.H. 2005. Frequency-dependent heat transfer enhancement from rectangular heated block array in a pulsating channel flow. International Journal of Heat and Mass Transfer, 48(23-24), pp.4904-4913. Available at: https://doi.org/10.1016/j.ijheatmasstransfer.2005.06.006.

Moon, J.W., Kim, S.Y. & Cho, H.H. 2002, January. An Experimental Study on Forced Convection From a Rectangular Heated Block by Acoustic Excitation in a Channel Flow. In: ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, USA, paper no:IMECE2002-33721, pp.81-88, November 17-22. Available at: https://doi.org/10.1115/IMECE2002-33721.

Parsaiemehr, M., Pourfattah, F., Akbari, O.A., Toghraie, D. & Sheikhzadeh, G. 2018. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Physica E: Low-Dimensional Systems and Nanostructures, 96, pp.73-84. Available at: https://doi.org/10.1016/j.physe.2017.10.012.

Patankar, S. 1980. Numerical Heat Transfer and Fluid Flow, 1st Edition. Boca Raton: CRC press. Available at: doi.org/10.1201/9781482234213.

Pishkar, I. & Ghasemi, B. 2012. Cooling enhancement of two fins in a horizontal channel by nanofluid mixed convection. International Journal of Thermal Sciences, 59, pp.141-151. Available at: https://doi.org/10.1016/j.ijthermalsci.2012.04.015.

Putra, N., Yanuar,nd & Iskandar, F.N. 2011. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Experimental Thermal and Fluid Science, 35(7), pp.1274-1281. Available at: https://doi.org/10.1016/j.expthermflusci.2011.04.015.

Young, T.J. & Vafai, K. 1998. Convective flow and heat transfer in a channel containing multiple heated obstacles. International Journal of Heat and Mass Transfer, 41(21), pp.3279-3298. Available at: https://doi.org/10.1016/S0017-9310(98)00014-3.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi