Dinamička analiza lučne brane

  • Abdelkrim Benahmed Univerzitetski centar „Nur Bašir”, Odeljenje za nauku i tehnologiju, El Bajad, Narodna Demokratska Republika Alžir https://orcid.org/0009-0009-4822-2810
  • Otbi Bouguenina Univerzitetski centar „Nur Bašir”, Odeljenje za nauku i tehnologiju, El Bajad, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-5611-140X
  • Ali Meksi Univerzitet „Mustafa Stamboli”, Fakultet nauke i tehnologije, Odsek za građevinarstvo, Laboratorija za ispitivanje strukture i mehanike materijala, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0009-0320-3704
  • Khaled Benmahdi Univerzitet „Mustafa Stamboli”, Fakultet nauke i tehnologije, Odsek za građevinarstvo, Laboratorija za ispitivanje strukture i mehanike materijala, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8244-5817
  • Khaled Bendahane Univerzitetski centar „Nur Bašir”, Odeljenje za nauku i tehnologiju, El Bajad, Narodna Demokratska Republika Alžir https://orcid.org/0009-0009-8408-9666
  • Mohamed Sadoun Univerzitet „Mustafa Stamboli”, Fakultet nauke i tehnologije, Odsek za građevinarstvo, Laboratorija za ispitivanje strukture i mehanike materijala, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0008-2314-9402
Ključne reči: dinamičko ponašanje, metod konačnih elemenata, formiranje prslina, brana, spektralna analiza

Sažetak


Uvod/cilj: Dinamička analiza seizmičkog odgovora lučne brane od betona predstavlja složen problem gde predstavljanje ponašanja materijala zahteva neki oblik nelinearnog modela, naročito ako je beton izložen velikom opterećenju temeljne površine. U slučajevima kada dolazi do masivnih pomeranja tla, velike prsline mogu da se formiraju na brani, naročito u njenoj osnovi, kao i u blizini iznenadnih promena u geometriji.

Metode: Ova analiza je zasnovana na numeričkoj simulaciji dinamičkog odgovora. Rad se zasniva na korišćenju metode konačnih elemenata pomoću programa ANSYS 12.1. Brana je modelovana u dve dimenzije. Korišćene su četiri vrste analiza: statička analiza, modalna analiza, seizmička analiza sa pobudom dva akcelerograma (Asnam 1980 i Bumerdes 2003) i spektralna analiza.

Rezultati: Ova analiza ukazala je na ranjivost brane Brezina od zemljotresa jačine onog u Bumerdesu sa velikim opterećenjima na temelj strukture.

Zaključci: Na osnovu ove studije zaključeno je da bi zemljotres veće jačine od onog u Bumerdesu izazvao strukturna oštećenja i prsline na brani Brezina koji bi ugrozili njenu vodonepropusnost i trajnost.

Reference

Aftabi Sani, A. & Lotfi, V. 2010. Dynamic analysis of concrete arch dams by ideal-coupled modal approach. Engineering Structures, 32(5), pp.1377-1383. Available at: https://doi.org/10.1016/j.engstruct.2010.01.016.

Asteris, P.G. & Tzamtzis, A.D. 2003. Nonlinear Seismic Response Analysis of Realistic Gravity Dam-Reservoir Systems. International Journal of Nonlinear Sciences and Numerical Simulation, 4(4), pp.329-338. Available at: https://doi.org/10.1515/IJNSNS.2003.4.4.329.

Bathe, K.-J. & Wilson, E.L. 1976. Numerical methods in finite element analysis (Prentice-Hall civil engineering and engineering mechanics series). Prentice-Hall. ISBN‏: 978-0136271901.

Bayraktar, A., Hançer, E. & Dumanoǧlu, A.A. 2005. Comparison of stochastic and deterministic dynamic responses of gravity dam–reservoir systems using fluid finite elements. Finite Elements in Analysis and Design, 41(14), pp.1365-1376. Available at: https://doi.org/10.1016/j.finel.2005.02.004.

Bayraktar, A., Türker, T., Akköse, M. & Ateş, Ş. 2010. The effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions. Natural Hazards, 52, pp.257-275. Available at: https://doi.org/10.1007/s11069-009-9368-1.

Bilici, Y., Bayraktar, A., Soyluk, K., Haciefendioğlu, K., Ateş, Ş. & Adanur, S. 2009. Stochastic dynamic response of dam-reservoir-foundation systems to spatially varying earthquake ground motions. Soil Dynamics and Earthquake Engineering, 29(3), pp.444-458. Available at: https://doi.org/10.1016/j.soildyn.2008.05.001.

Calayir, Y., Dumanoğlu, A.A., & Bayraktar, A. 1996. Earthquake analysis of gravity dam-reservoir systems using the eulerian and lagrangian approaches. Computers & Structures, 59(5), pp.877-890. Available at: https://doi.org/10.1016/0045-7949(95)00309-6.

Chopra, A.K. 1995. Dynamics of structures: Theory and applications to earthquake engineering. Englewood Cliffs, NJ, USA: Prentice Hall. ISBN: 0-13-855214-2.

Chopra, A.K. & Gupta, S. 1981. Hydrodynamic and Foundation Interaction Effects in Earthquake Response of a Concrete Gravity Dam. Journal of the Structural Division, 107(8), pp.1399-1412. Available at: https://doi.org/10.1061/JSDEAG.0005756.

Clough, R.W. & Penzien, J. 1975. Dynamics of Structures. McGraw-Hill College. ISBN: 978-0070113923.

de Araújo, J.M. & Awruch, A.M. 1998. Probabilistic finite element analysis of concrete gravity dams. Advances in Engineering Software, 29(2), pp.97-104. Available at: https://doi.org/10.1016/S0965-9978(98)00052-0.

Datta, T.K. 2010. Seismic Analysis of Structures. Wiley. ISBN: 978-0-470-82462-7.

Der Kiureghian, A. 1981. Seismic Risk Analysis of Structural System. Journal of Engineering Mechanics, 107(6), pp.1133-1153. Available at: https://doi.org/10.1061/JMCEA3.0002772.

Der Kiureghian, A. 1996. Structural reliability methods for seismic safety assessment: a review. Engineering Structure, 18(6), pp.412-424. Available at: https://doi.org/10.1016/0141-0296(95)00005-4.

Fenves, G. & Chopra, A.K. 1987. Simplified Earthquake Analysis of Concrete Gravity Dams. Journal of Structural Engineering, 113(8), pp.1688-708. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1987)113:8(1688).

Ghaemian, M. & Ghobarah, A. 1999. Nonlinear seismic response of concrete gravity dams with dam–reservoir interaction. Engineering Structures, 21(4), pp.306-315. Available at: https://doi.org/10.1016/S0141-0296(97)00208-3.

Guan, F. & Moore, I.D. 1997. New techniques for modelling reservoir-dam and foundation-dam interaction. Soil Dynamics and Earthquake Engineering, 16(4), pp.285-293. Available at: https://doi.org/10.1016/S0267-7261(96)00044-9.

Jablonski, A.M. & Humar, J.L. 1990 . Three-dimensional boundary element reservoir model for seismic analysis of arch and gravity dams. Earthquake Engineering & Structural Dynamics,19(3), pp.359-376. Available at: https://doi.org/10.1002/eqe.4290190306.

Küçükarslan, S., Coşkun, S.B. & Taşkın, B. 2005. Transient analysis of dam–reservoir interaction including the reservoir bottom effects. Journal of Fluids and Structures, 20(8), pp.1073-1084. Available at: https://doi.org/10.1016/j.jfluidstructs.2005.05.004.

Li, S.-m., Li, H. & Li, A.-m. 2008. A Semi-Analytical Solution for Characteristics of a Dam-Reservoir System with Absorptive Reservoir Bottom. Journal of Hydrodynamics, 20, pp.727-734. Available at: https://doi.org/10.1016/S1001-6058(09)60008-1.

Li, Q.S., Li, Z.N., Li, G.Q., Meng, J.F. & Tang, J. 2005. Experimental and numerical seismic investigations of the Three Gorges Dam. Engineering Structures, 27(4), pp.501-513. Available at: https://doi.org/10.1016/j.engstruct.2004.11.009.

Maity, D. & Bhattacharyya, S.K. 1999. Time-domain analysis of infinite reservoir by finite element method using a novel far-boundary condition. Finite Elements in Analysis and Design, 32(2), pp.85-96. Available at: https://doi.org/10.1016/S0168-874X(98)00077-8.

Maity, D. & Bhattacharyya, S.K. 2003. A parametric study on fluid–structure interaction problems. Journal of Sound and Vibration, 263(4), pp.917-935. Available at: https://doi.org/10.1016/S0022-460X(02)01079-9.

Miguel, B. & Bouaanani, N. 2010. Simplified evaluation of the vibration period and seismic response of gravity dam water systems . Engineering Structures, 32(8), pp.2488-2502. Available at: https://doi.org/10.1016/j.engstruct.2010.04.025

Millán, M.A., Young, Y.L. & Prévost, J.H. 2007. The effects of reservoir geometry on the seismic response of gravity dams. Earthquake Engineering And Structural Dynamics, 36(11), pp.1441-1459. Available at: https://doi.org/10.1002/eqe.688.

Ross, M.R., Felippa, C.A., Park, K.C. & Sprague, M.A. 2008. Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers: Formulation. Computer Methods in Applied Mechanics and Engineering, 197(33-40), pp.3057-3079. Available at: https://doi.org/10.1016/j.cma.2008.02.017

Samii, A. & Lotfi, V. 2007. Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain. Finite Elements in Analysis and Design, 43(13), pp.1003-1012. Available at: https://doi.org/10.1016/j.finel.2007.06.015.

Singhal, A.C. 1991. Comparison of computer codes for seismic analysis of dams. Computers & Structures, 38(1), pp.107-112. Available at: https://doi.org/10.1016/0045-7949(91)90128-9.

Wang, C., Zhang, H ., Zhang, Y., Guo, L ., Wang, Y. & Thira Htun, T.T. 2021 Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions. Water, 13(21), art.number:3072 . Available at: https://doi.org/10.3390/w13213072.

Westergaard, H.M. 1933. Water Pressures on Dams during Earthquakes. Transactions of the American Society of Civil Engineers, 98(2), pp.418-472. Available at: https://doi.org/10.1061/TACEAT.0004496.

Xu, Y., Shao, C., Zheng, S., Li, X., Gu, H. & Zheng, D. 2024. A time series modeling approach for damage monitoring of concrete dam under seismic effects. Structures, 59, art.number:105656. Available at: https://doi.org/10.1016/j.istruc.2023.105656.

Yazdchi, M., Khalili, N. & Valliappan, S. 1999. Dynamic soil-structure interaction analysis via coupled finite-element-boundary-element method. Soil Dynamics and Earthquake Engineering, 18(7), pp.499-517. Available at: https://doi.org/10.1016/S0267-7261(99)00019-6.

Zienkiewicz, O.C. & Bettes, P. 1978. Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment. International Journal for Numerical Methods in Engineering, 13(1), pp.1-16. Available at: https://doi.org/10.1002/nme.1620130102.

Objavljeno
2024/09/28
Rubrika
Originalni naučni radovi