Dinamička analiza lučne brane
Sažetak
Uvod/cilj: Dinamička analiza seizmičkog odgovora lučne brane od betona predstavlja složen problem gde predstavljanje ponašanja materijala zahteva neki oblik nelinearnog modela, naročito ako je beton izložen velikom opterećenju temeljne površine. U slučajevima kada dolazi do masivnih pomeranja tla, velike prsline mogu da se formiraju na brani, naročito u njenoj osnovi, kao i u blizini iznenadnih promena u geometriji.
Metode: Ova analiza je zasnovana na numeričkoj simulaciji dinamičkog odgovora. Rad se zasniva na korišćenju metode konačnih elemenata pomoću programa ANSYS 12.1. Brana je modelovana u dve dimenzije. Korišćene su četiri vrste analiza: statička analiza, modalna analiza, seizmička analiza sa pobudom dva akcelerograma (Asnam 1980 i Bumerdes 2003) i spektralna analiza.
Rezultati: Ova analiza ukazala je na ranjivost brane Brezina od zemljotresa jačine onog u Bumerdesu sa velikim opterećenjima na temelj strukture.
Zaključci: Na osnovu ove studije zaključeno je da bi zemljotres veće jačine od onog u Bumerdesu izazvao strukturna oštećenja i prsline na brani Brezina koji bi ugrozili njenu vodonepropusnost i trajnost.
Reference
Aftabi Sani, A. & Lotfi, V. 2010. Dynamic analysis of concrete arch dams by ideal-coupled modal approach. Engineering Structures, 32(5), pp.1377-1383. Available at: https://doi.org/10.1016/j.engstruct.2010.01.016.
Asteris, P.G. & Tzamtzis, A.D. 2003. Nonlinear Seismic Response Analysis of Realistic Gravity Dam-Reservoir Systems. International Journal of Nonlinear Sciences and Numerical Simulation, 4(4), pp.329-338. Available at: https://doi.org/10.1515/IJNSNS.2003.4.4.329.
Bathe, K.-J. & Wilson, E.L. 1976. Numerical methods in finite element analysis (Prentice-Hall civil engineering and engineering mechanics series). Prentice-Hall. ISBN: 978-0136271901.
Bayraktar, A., Hançer, E. & Dumanoǧlu, A.A. 2005. Comparison of stochastic and deterministic dynamic responses of gravity dam–reservoir systems using fluid finite elements. Finite Elements in Analysis and Design, 41(14), pp.1365-1376. Available at: https://doi.org/10.1016/j.finel.2005.02.004.
Bayraktar, A., Türker, T., Akköse, M. & Ateş, Ş. 2010. The effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions. Natural Hazards, 52, pp.257-275. Available at: https://doi.org/10.1007/s11069-009-9368-1.
Bilici, Y., Bayraktar, A., Soyluk, K., Haciefendioğlu, K., Ateş, Ş. & Adanur, S. 2009. Stochastic dynamic response of dam-reservoir-foundation systems to spatially varying earthquake ground motions. Soil Dynamics and Earthquake Engineering, 29(3), pp.444-458. Available at: https://doi.org/10.1016/j.soildyn.2008.05.001.
Calayir, Y., Dumanoğlu, A.A., & Bayraktar, A. 1996. Earthquake analysis of gravity dam-reservoir systems using the eulerian and lagrangian approaches. Computers & Structures, 59(5), pp.877-890. Available at: https://doi.org/10.1016/0045-7949(95)00309-6.
Chopra, A.K. 1995. Dynamics of structures: Theory and applications to earthquake engineering. Englewood Cliffs, NJ, USA: Prentice Hall. ISBN: 0-13-855214-2.
Chopra, A.K. & Gupta, S. 1981. Hydrodynamic and Foundation Interaction Effects in Earthquake Response of a Concrete Gravity Dam. Journal of the Structural Division, 107(8), pp.1399-1412. Available at: https://doi.org/10.1061/JSDEAG.0005756.
Clough, R.W. & Penzien, J. 1975. Dynamics of Structures. McGraw-Hill College. ISBN: 978-0070113923.
de Araújo, J.M. & Awruch, A.M. 1998. Probabilistic finite element analysis of concrete gravity dams. Advances in Engineering Software, 29(2), pp.97-104. Available at: https://doi.org/10.1016/S0965-9978(98)00052-0.
Datta, T.K. 2010. Seismic Analysis of Structures. Wiley. ISBN: 978-0-470-82462-7.
Der Kiureghian, A. 1981. Seismic Risk Analysis of Structural System. Journal of Engineering Mechanics, 107(6), pp.1133-1153. Available at: https://doi.org/10.1061/JMCEA3.0002772.
Der Kiureghian, A. 1996. Structural reliability methods for seismic safety assessment: a review. Engineering Structure, 18(6), pp.412-424. Available at: https://doi.org/10.1016/0141-0296(95)00005-4.
Fenves, G. & Chopra, A.K. 1987. Simplified Earthquake Analysis of Concrete Gravity Dams. Journal of Structural Engineering, 113(8), pp.1688-708. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1987)113:8(1688).
Ghaemian, M. & Ghobarah, A. 1999. Nonlinear seismic response of concrete gravity dams with dam–reservoir interaction. Engineering Structures, 21(4), pp.306-315. Available at: https://doi.org/10.1016/S0141-0296(97)00208-3.
Guan, F. & Moore, I.D. 1997. New techniques for modelling reservoir-dam and foundation-dam interaction. Soil Dynamics and Earthquake Engineering, 16(4), pp.285-293. Available at: https://doi.org/10.1016/S0267-7261(96)00044-9.
Jablonski, A.M. & Humar, J.L. 1990 . Three-dimensional boundary element reservoir model for seismic analysis of arch and gravity dams. Earthquake Engineering & Structural Dynamics,19(3), pp.359-376. Available at: https://doi.org/10.1002/eqe.4290190306.
Küçükarslan, S., Coşkun, S.B. & Taşkın, B. 2005. Transient analysis of dam–reservoir interaction including the reservoir bottom effects. Journal of Fluids and Structures, 20(8), pp.1073-1084. Available at: https://doi.org/10.1016/j.jfluidstructs.2005.05.004.
Li, S.-m., Li, H. & Li, A.-m. 2008. A Semi-Analytical Solution for Characteristics of a Dam-Reservoir System with Absorptive Reservoir Bottom. Journal of Hydrodynamics, 20, pp.727-734. Available at: https://doi.org/10.1016/S1001-6058(09)60008-1.
Li, Q.S., Li, Z.N., Li, G.Q., Meng, J.F. & Tang, J. 2005. Experimental and numerical seismic investigations of the Three Gorges Dam. Engineering Structures, 27(4), pp.501-513. Available at: https://doi.org/10.1016/j.engstruct.2004.11.009.
Maity, D. & Bhattacharyya, S.K. 1999. Time-domain analysis of infinite reservoir by finite element method using a novel far-boundary condition. Finite Elements in Analysis and Design, 32(2), pp.85-96. Available at: https://doi.org/10.1016/S0168-874X(98)00077-8.
Maity, D. & Bhattacharyya, S.K. 2003. A parametric study on fluid–structure interaction problems. Journal of Sound and Vibration, 263(4), pp.917-935. Available at: https://doi.org/10.1016/S0022-460X(02)01079-9.
Miguel, B. & Bouaanani, N. 2010. Simplified evaluation of the vibration period and seismic response of gravity dam water systems . Engineering Structures, 32(8), pp.2488-2502. Available at: https://doi.org/10.1016/j.engstruct.2010.04.025
Millán, M.A., Young, Y.L. & Prévost, J.H. 2007. The effects of reservoir geometry on the seismic response of gravity dams. Earthquake Engineering And Structural Dynamics, 36(11), pp.1441-1459. Available at: https://doi.org/10.1002/eqe.688.
Ross, M.R., Felippa, C.A., Park, K.C. & Sprague, M.A. 2008. Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers: Formulation. Computer Methods in Applied Mechanics and Engineering, 197(33-40), pp.3057-3079. Available at: https://doi.org/10.1016/j.cma.2008.02.017
Samii, A. & Lotfi, V. 2007. Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain. Finite Elements in Analysis and Design, 43(13), pp.1003-1012. Available at: https://doi.org/10.1016/j.finel.2007.06.015.
Singhal, A.C. 1991. Comparison of computer codes for seismic analysis of dams. Computers & Structures, 38(1), pp.107-112. Available at: https://doi.org/10.1016/0045-7949(91)90128-9.
Wang, C., Zhang, H ., Zhang, Y., Guo, L ., Wang, Y. & Thira Htun, T.T. 2021 Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions. Water, 13(21), art.number:3072 . Available at: https://doi.org/10.3390/w13213072.
Westergaard, H.M. 1933. Water Pressures on Dams during Earthquakes. Transactions of the American Society of Civil Engineers, 98(2), pp.418-472. Available at: https://doi.org/10.1061/TACEAT.0004496.
Xu, Y., Shao, C., Zheng, S., Li, X., Gu, H. & Zheng, D. 2024. A time series modeling approach for damage monitoring of concrete dam under seismic effects. Structures, 59, art.number:105656. Available at: https://doi.org/10.1016/j.istruc.2023.105656.
Yazdchi, M., Khalili, N. & Valliappan, S. 1999. Dynamic soil-structure interaction analysis via coupled finite-element-boundary-element method. Soil Dynamics and Earthquake Engineering, 18(7), pp.499-517. Available at: https://doi.org/10.1016/S0267-7261(99)00019-6.
Zienkiewicz, O.C. & Bettes, P. 1978. Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment. International Journal for Numerical Methods in Engineering, 13(1), pp.1-16. Available at: https://doi.org/10.1002/nme.1620130102.
Sva prava zadržana (c) 2024 Abdelkrim Benahmed, Otbi Bouguenina, Ali Meksi, Khaled Benmahdi, Khaled Bendahane, Mohamed Sadoun
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).