Smart tretman u zarastanju preloma: piezoelektrični pretvarači i aktuatori step motora

Ključne reči: smart implantat, piezoelektrični senzor, fraktura kosti, step motor

Sažetak


Uvod/cilj: Smart ortopedski sistemi koriste fiksatore sa mogućnošću daljinskog praćenja, obrade i komunikacije kako bi iskoristili podatke o napredovanju lečenja za personalizovano praćenje procesa zarastanja u realnom vremenu. Fiksatori sadrže male i kompaktne piezoelektrične senzore koji generišu električne signale pri primeni sile na piezoelektričnu dijafragmu. To omogućava lekarima da daljinski vode uređaje za fiksiranje sa udaljenosti koristeći indirektno i daljinski kontrolisane step (koračne) motore poznate po preciznosti i tačnosti. Njihova pouzdanost čini ih održivom alternativom za mehaničke alate koje lekari tradicionalno koriste za produžavanje fiksatora.

Metode: Ova studija se fokusira na evaluaciju tehnologije zasnovane na senzorima u ortopedskim aplikacijama. U njoj je predstavljen teorijski okvir za primenu smart uređaja u procesu zarastanja preloma kostiju. Razmatra  se i struktura i funkcionalnost piezoelektričnih pretvarača i nudi sveobuhvatan uvid u ovu tehnologiju i različite inženjerske aspekte smart sistema.

Rezultati: Implementacijom smart sistema značajno je poboljšana komunikacija između lekara i pacijenta. To je olakšano kroz proces koji obuhvata prikupljanje, obradu i bežični prenos podataka od pacijentovog (senzorskog) interfejsa do lekara, koji koristi specijalizovani softver za analizu podataka i bežični prenos do aktuatora step motora. Nakon toga podaci se prosleđuju dekoderu na lokaciji motora, gde kontroler motora generiše kontrolni signal za drajver motora.

Zaključak: Smart implantati pružaju lekarima kvantitativne podatke koji se mogu koristiti u usmeravanju plana rehabilitacije. Tehnologija zasnovana na senzorima nudi uvid u stres izazvan formiranjem kalusa, omogućavajući dvosmernu komunikaciju između lekara i pacijenta. Step motor služi kao alat koji pomaže u personalizovanom tretmanu sa udaljenosti.

Reference

Abas, A. & Bakar, A. 2017. Design of a Microcontroller Based RF Remote Control for Stepper Motor Control. In: Proceedings of IC-ITS 2017 3rd International Conference on Information Technology & Society, Penang, Malaysia, pp.96-104, July 31-August 01. ISBN: 978-967-2122-04-3.

Aguirre, E., Lopez-Iturri, P., Azpilicueta, L., Rivarés, C., Astrain, J.J., Villadangos, J. & Falcone, F. 2016. Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring. International Journal of Distributed Sensor Networks, 12(9). Available at: https://doi.org/10.1177/1550147716668063.

Aherwar, A., Singh, A.K. & Patnaik, A. 2016. Cobalt Based Alloy: A Better Choice Biomaterial for Hip Implants. Trends in Biomaterials and Artificial Organs, 30(1), pp.50-55.

Allizond, V., Comini, S., Cuffini, A.M. & Banche, G. 2022. Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics 11(4), art.number:529. Available at: https://doi.org/10.3390/antibiotics11040529.

Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. 2016. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials, 26(11), pp.1678-1698. Available at: https://doi.org/10.1002/adfm.201504755.

Andrew, W. 2024. Human skeleton. Encyclopedia Britannica, 08 April [online]. Available at: https://www.britannica.com/science/human-skeleton [Accessed 28 March 2024].

Anene, F.A., Aiza Jaafar, C.N., Zainol, I., Azmah Hanim, M.A. & Suraya, M.T. 2021. Biomedical materials: A review of titanium based alloys. Proceedings of the Institution of Mechanical Engingeers, Part C: Journal of Mechanical Engineering Science, 235(19), pp.3792-3805. Available at: https://doi.org/10.1177/0954406220967694.

Antic, V., Misic, D. & Manic, M. 2023a. Strain sensor-based monitoring of smart orthopedic devices in lower limb fracture healing: a review. Innovative Mechanical Engineering, 2(3), pp.17-41 [online]. Available at: http://ime.masfak.ni.ac.rs/index.php/IME/article/view/60 [Accessed: 19 February 2024].

Antic, V., Misic, D. & Manic, M. 2023b. Smart orthopedic implant: conceptual solution. In: 39th International Conference on Production Engineering - Serbia, Novi Sad, Serbia, pp.1-5, October 26-27. ISBN: 978-86-6022-610-7.

Atmojo, J.T., Sudaryanto, W.T., Widiyanto, A., Ernawati & Arradini, D. 2020. Telemedicine, Cost Effectiveness, and Patients Satisfaction: A Systematic Review. Journal of Health Policy and Management, 5(2), pp.103-107 [online]. Available at: https://thejhpm.com/index.php/thejhpm/article/view/172 [Accessed: 05 December 2023].

Bansal, D. 2012. Potential of Piezoelectric Sensors in Bio-signal Acquisition. Sensors and Transducers, 136(1), pp.147-157 [online]. Available at: https://www.sensorsportal.com/HTML/DIGEST/P_916.htm [Accessed: 05 December 2023].

Binyamin, G., Shafi, B.M. & Mery, C.M. 2006. Biomaterials: A primer for surgeons. Seminars in Pediatric Surgery, 15(4), pp.276-283. Available at: https://doi.org/10.1053/j.sempedsurg.2006.07.007.

Bizzoca, D., Vicenti, G., Caiaffa, V., Abate, A., Carolis, O.D., Carrozzo, M., Solarino, G. & Moretti, B. 2023. Assessment of fracture healing in orthopaedic trauma. Injury, 54(1), pp.S46-S52. Available at: https://doi.org/10.1016/j.injury.2020.11.014.

Borchani, W., Aono, K., Lajnef, N. & Chakrabartty, S. 2016. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device with Integrated Self-Powered Piezo-Floating-Gate Sensors. IEEE Transactions on Biomedical Engineering, 63(7), pp.1463-1472. Available at: http://doi.org/10.1109/TBME.2015.2496237.

Brogini, S., Sartori, M., Giavaresi, G., Cremascoli, P., Alemani, F., Bellini, D., Martini, L., Maglio, M., Pagani, S. & Fini, M. 2021. Osseointegration of additive manufacturing Ti–6Al–4V and Co–Cr–Mo alloys, with and without surface functionalization with hydroxyapatite and type I collagen. Journal of the Mechanical Behavior of Biomedical Materials, 115, art.number:104262. Available at: https://doi.org/10.1016/j.jmbbm.2020.104262.

Button, K.S., Ioanidis, J.P.A., Mokryzs, C., Noseka, B.A., Flint, J., Robinson, E.S.J. & Munafo, M.R. 2013. Confidence and precision increase with high statistical power. Nature Reviews Neuroscience, 14, art.number:585. Available at: https://doi.org/10.1038/nrn3475-c4.

Cheng, M. & Scattareggia, S. 2011. How to Select the Right Stepmotor for a Medical Device. MachineDesign.com [online]. Available at: https://www.machinedesign.com/markets/medical/article/21832379/how-to-select-the-right-stepmotor-for-a-medical-device [Accessed: 29 February 2024].

Chiurazzi, M., Garozzo, G. G., Dario, P. & Ciuti, G. 2020. Novel Capacitive-Based Sensor Technology for Augmented Proximity Detection. IEEE Sensors Journal, 20(12), pp.6624-6633. Available at: https://doi.org/10.1109/JSEN.2020.2972740.

Claes, L.E. & Cunningham, J.L. 2009. Monitoring the Mechanical Properties of Healing Bone. Clinical Orthopedic and Related Research, 467(8), pp.1964-1971. Available at: https://doi.org/10.1007/s11999-009-0752-7.

Coneicao, C., Completo, A. & Soares dos Santos Marco P. 2023. Ultrasensitive capacitive sensing system for smart medical devices with ability to monitor fracture healing stages. Journal of the Royal Society Interface, 20, art.number:20220818. Available at: https://doi.org/10.1098/rsif.2022.0818.

Cram, N. 2004. 10 - Careers, Roles, and Responsibilities. In: Clinical Engineering Handbook. Academic Press. Available at: https://doi.org/10.1016/B978-012226570-9/50012-0.

Ernst, M., Richards, R.G. & Windolf, M. 2020. Smart implants in fracture care – only buzzword or real opportunity? Injury, 52(2), pp.S101-S105. Available at: https://doi.org/10.1016/j.injury.2020.09.026.

Findik, F. 2020. Recent developments of metallic implants for biomedical applications. Periodical of Engineering and Natural Sciences, 8(1), pp.33-57 [online]. Available at: http://pen.ius.edu.ba/index.php/pen/article/view/988/487 fAccessed: 05.12.2024].

Francis, A. 2021. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(5), pp.744-764. Available at: https://doi.org/10.1002/jbm.b.34740.

Friis, E.A., DeCoster, D.A. & Thomas, J.C. 2017. 7 - Mechanical testing of fracture fixation devices. In: Friis, E.A. (Ed.) Mechanical Testing of Orthopaedic Implants, pp.131-141. Sawston, Cambridge, UK: Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100286-5.00007-X.

Green, S.R. & Gianchandani, Y.B. 2009. Wireless Magnetoelastic Monitoring of Biliary Stents. Journal of Microelectromechanical Systems, 18(1), pp.64-78, Available at: http://doi.org/10.1109/JMEMS.2008.2008568.

Harb, A.M. & Zaher, A.A. 2004. Nonlinear control of permanent magnet stepper motors. Communications in Nonlinear Science and Numerical Simulation 9(4), pp.443-458. Available at: https://doi.org/10.1016/S1007-5704(02)00133-8.

-ICLL International Center for Limb Lengthening. 2024. Limb lengthening: The process. Limblength.org [online]. Available at: https://www.limblength.org/treatments/limb-lengthening-the-process/ [Accessed: 1 March 2024].

Jacobs, J.J., Gilbert, J.L. & Urban, R.M. 1998. Current Concepts Review - Corrosion of Metal Orthopaedic Implants. The Journal of Bone & Joint Surgery, 80(2), pp.268-282. Available at: https://doi.org/10.2106/00004623-199802000-00015.

Jefferies, C., Al-Malaika, S. & Sheena, H.H. 2021. New and novel stabilisation approach for radiation-crosslinked Ultrahigh Molecular Weight Polyethylene (XL-UHMWPE) targeted for use in orthopaedic implants. Polymer Degradation and Stability, 183, art.number:109462. Available at: https://doi.org/10.1016/j.polymdegradstab.2020.109462.

Kausar, A. 2022. Sensing Materials: Nanocomposites. Encyclopedia of Sensors and Biosensors 2, pp.305-315. Available at: https://doi.org/10.1016/B978-0-12-822548-6.00048-0.

Kim, Y.-G., Song, J.-H., Hong, S. & Ahn, S.-H. 2022. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. npj Flexible Electronics 6, art.number:52. Available at: https://doi.org/10.1038/s41528-022-00186-4.

Kruse, C.S., Krowski, N., Rodriges, B., Tran, L., Jackeline, V. & Brooks, M. 2017. Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open, 7, e016242. Available at: https://doi.org/10.1136/bmjopen-2017-016242.

Kumar, K. 2021. Stepper Motors for Medical Applications. Portescap.com, 27 August [online]. Available at: https://www.portescap.com/en/newsroom/blog/2021/08/stepper-motors-for-medical-applications [Accessed: 19 February 2024].

Ledet, E.H., Liddle, B., Kradinova, K. & Harper, S. 2018. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innovative Entrepreneur in Health, 5, pp.41-51. Available at: https://doi.org/10.2147/IEH.S133518.

Li, W. & Li, J. 2022. The Development Direction of Information Security in Wireless Communication. Advances in Social Science, Education and Humanities Research, 666, pp.177-180 [online]. Available at: https://www.atlantis-press.com/proceedings/stehf-22/125975590 [Accessed: 05.12.2023].

Lin, M.C., Hu, D., Marmor, M., Herfat S.T., Bahney, C.S. & Maharbiz, M.M. 2019. Smart bone plates can monitor fracture healing. Scientific Reports, 9, art.number:2122. Available at: https://doi.org/10.1038/s41598-018-37784-0.

Naghdi, T., Ardalan, S., Asghari Adib, Z., Shafiri, A.R. & Golmogammadi, H. 2023. Moving towards smart biomedical sensing. Biosensors and Bioelectronics, 223, art.number:115009. Available at: https://doi.org/10.1016/j.bios.2022.115009.

Nicholson, J.A., Yapp, L.Z., Keating, J.F. & Simpson, A.H.R.W. 2021. Monitoring of fracture healing. Update on current and future imaging modalities to predict union. Injury, 52(2), pp.S29-S34. Available at: https://doi.org/10.1016/j.injury.2020.08.016.

O’Connor, C. & Kiourti, A. 2017. Wireless Sensors for Smart Orthopedic Implants. Journal of Bio- and Tribo-Corrosion, 3, art.number:20. Available at: https://doi.org/10.1007/s40735-017-0078-z.

Pelham, H., Benza, D., Millhouse, P.W., Carrington, N., Ariffuzamann, Md., Behrend, C.J., Anker, J.N. & DesJardins, J.D. 2017. Implantable strain sensor to monitor fracture healing with standard radiography. Scientific Reports, 7, art.number:1489. Available at: https://doi.org/10.1038/s41598-017-01009-7.

Piconi, C. 2017. 5 - Ceramics for joint replacement: Design and application of commercial bearings. In: Palmero, P., Cambier, F. & De Barra, E. (Eds.) Advances in Ceramic Biomaterials, pp.129-179. Sawston, Cambridge, UK: Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100881-2.00005-1.

Poinem, G.E.J., Brundavanam, S. & Fawcet, D. 2012. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2(6), pp.218-240. Available at: https://doi.org/10.5923/J.AJBE.20120206.02.

Rohani Shirvan, A., Nouri, A. & Wen, C. 2021. 12 - Structural polymer biomaterials, In: Wen, C. (Ed.) Woodhead Publishing Series in Biomaterials, Structural Biomaterials. Sawston, Cambridge, UK: Woodhead Publishing, pp.395-439. Available at: https://doi.org/10.1016/B978-0-12-818831-6.00010-0.

Sellei, R.M., Kobbe, P., Dienstknecht, T., Lichte, P., Pfeifer, R., Behrens, M., Brianza, S. & Pape, H.-C. 2015. Biomechanical properties of different external fixator frame configurations. European Journal of Trauma and Emergency Surgery, 41, pp.313-318. Available at: https://doi.org/10.1007/s00068-014-0436-1.

Shayesteh Moghaddam, N., Taheri Andani, M., Amerinatanzi, A., Haberlend, C., Huff, S., Miller, M., Elahinia, M. & Dean, D. 2016. Metals for bone implants: safety, design, and efficacy. Biomanufacturing Reviews, 1, art.number:1. Available at: https://doi.org/10.1007/s40898-016-0001-2.

Sheen, J.R., Mabrouk, A. & Garla, V.V. 2023. Fracture Healing Overview. National Library of Medicine, 8 April [online]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK551678/ [Accessed 28 March 2024].

Shekhawat, D., Singh, A., Bhardwaj, A. & Patnaik, A. 2021. A Short Review on Polymer, Metal and Ceramic Based Implant Materials. IOP Conferences Series: Materials Science and Engineering, 1017, art.number:012038. Available at: https://doi.org/10.1088/1757-899X/1017/1/012038.

Sirohi, J. & Chopra, I. 2000. Fundamental Understanding of Piezoelectric Strain Sensors. Journal of Intelligent Material Systems and Structures, 11(4), pp.246-257. Available at: https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0.

Soares dos Santos, M.P. & Bernardo R.M.C. 2022. Bioelectronic multifunctional bone implants: recent trends. Bioelectronic Medicine, 8, art.number:15. Available at: https://doi.org/10.1186/s42234-022-00097-9.

Solanke, S., Gaval, V. & Sanghavi, S. 2021. In vitro tribological investigation and osseointegration assessment for metallic orthopedic bioimplant materials. Materials Today: Proceedings, 44(6), pp.4173-4178. Available at: https://doi.org/10.1016/j.matpr.2020.10.528.

Sowjanya, V.H., Kiran, P., Ravi Kumar, V. & Chandu, B. 2018. Controlling a wireless stepper motor by rf transmitter and receiver using arduino. International Journal of Research and Analytical Reviews, 5(1), pp.121-125 [online]. Available at: https://www.ijrar.org/papers/IJRAR1CXP024.pdf [Accessed 28 March 2024].

Sun, R., Zhang, B., Yang, L., Zhang, W., Farrow, I., Scrapa, F. & Rossiter, J. 2018. Kirigami stretchable strain sensors with enhanced piezoelectricity induced by topological electrodes. Applied Physics Letters, 112(25), art.number:251904. Available at: https://doi.org/10.1063/1.5025025.

Sun, G., Matsui, T., Watai Y., Kim, S., Kirimoto, T., Suzuki, S. & Hakozaki, Y. 2018. Vital-SCOPE: Design and Evaluation of a Smart Vital Sign Monitor for Simultaneous Measurement of Pulse Rate, Respiratory Rate, and Body Temperature for Patient Monitoring. Journal of Sensors, art.ID:4371872. Available at: https://doi.org/10.1155/2018/4371872.

Taheri Andani, M., Moghaddam, N.S., Haberland, C., Dean, D., Miler, M.J. & Elahinia, M. 2014. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomaterialia 10(10), pp.4058-4070. Available at: https://doi.org/10.1016/j.actbio.2014.06.025.

Tandon, B., Blaker, J.J. & Cartmell S.H. 2018. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73, pp.1-20. Available at: https://doi.org/10.1016/j.actbio.2018.04.026.

Taylor, H.R. 1997. Data Acquisition for Sensor Systems. Chapman & Hall. ISBN: 0-412-78560-9.

Thomas, L. 2023. What is Telemedicine? News-Medical.net, 18 January [online]. Available at: https://www.news-medical.net/health/What-is-Telemedicine.aspx [Accessed: 03 April 2024].

Xu, W., Lu, X., Tian, J., Huang, C., Chen, M., Yan, Y., Wang, L., Qu, X. & Wen, C. 2020. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications. Journal of Materials Science & Technology, 41, pp.191-198. Available at: https://doi.org/10.1016/j.jmst.2019.08.041.

Objavljeno
2024/06/10
Rubrika
Pregledni radovi