SMART monitoring and treatment of fracture healing: Piezoelectric transducers and stepper motor actuators

Keywords: SMART implant, piezoelectric sensor, fracture healing, stepper motor

Abstract


Introduction/purpose: SMART orthopedic systems use fixators with remote monitoring, processing, and communication capabilities to leverage healing progression data for personalized, real-time monitoring of a healing process. The fixators incorporate small and compact piezoelectric sensors that generate electrical signals upon the application of force to the piezoelectric diaphragm. This enables doctors to remotely guide fixation devices using indirectly and remotely controlled stepper motors known for their precision and accuracy. Reliability of stepper motors makes them a viable alternative for the mechanical tools traditionally used by doctors for fixator extension.

Methods: This study focuses on the evaluation of sensor-based technology in orthopedic applications. The paper presents a theoretical framework for the application of SMART devices in the bone fracture healing process. It delves into the structure and functionality of piezoelectric transducers, offering a comprehensive insight into this technology and various engineering aspects of SMART systems.

Results: The implementation of SMART systems has significantly enhanced doctor-patient communication. This improvement is facilitated through a dual-phase process involving gathering, processing, and transmitting the data wirelessly from the patient’s (sensor) interface to the doctor who uses specialized software for data analysis and wireless transmission to the stepper motor actuator. Subsequently, the data is forwarded to the decoder at the motor site, where a motor controller generates the control signal for the stepper motor driver.

Conclusion: SMART implants can provide doctors with quantitative data that can be used in directing a rehabilitation plan. The sensor-based technology offers insights into the stress induced by the callus formation enabling bidirectional communication between the doctor and the patient. The stepper motor is a tool that aids in personalized treatment from the distance. 

References

Abas, A. & Bakar, A. 2017. Design of a Microcontroller Based RF Remote Control for Stepper Motor Control. In: Proceedings of IC-ITS 2017 3rd International Conference on Information Technology & Society, Penang, Malaysia, pp.96-104, July 31-August 01. ISBN: 978-967-2122-04-3.

Aguirre, E., Lopez-Iturri, P., Azpilicueta, L., Rivarés, C., Astrain, J.J., Villadangos, J. & Falcone, F. 2016. Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring. International Journal of Distributed Sensor Networks, 12(9). Available at: https://doi.org/10.1177/1550147716668063.

Aherwar, A., Singh, A.K. & Patnaik, A. 2016. Cobalt Based Alloy: A Better Choice Biomaterial for Hip Implants. Trends in Biomaterials and Artificial Organs, 30(1), pp.50-55.

Allizond, V., Comini, S., Cuffini, A.M. & Banche, G. 2022. Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics 11(4), art.number:529. Available at: https://doi.org/10.3390/antibiotics11040529.

Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. 2016. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials, 26(11), pp.1678-1698. Available at: https://doi.org/10.1002/adfm.201504755.

Andrew, W. 2024. Human skeleton. Encyclopedia Britannica, 08 April [online]. Available at: https://www.britannica.com/science/human-skeleton [Accessed 28 March 2024].

Anene, F.A., Aiza Jaafar, C.N., Zainol, I., Azmah Hanim, M.A. & Suraya, M.T. 2021. Biomedical materials: A review of titanium based alloys. Proceedings of the Institution of Mechanical Engingeers, Part C: Journal of Mechanical Engineering Science, 235(19), pp.3792-3805. Available at: https://doi.org/10.1177/0954406220967694.

Antic, V., Misic, D. & Manic, M. 2023a. Strain sensor-based monitoring of smart orthopedic devices in lower limb fracture healing: a review. Innovative Mechanical Engineering, 2(3), pp.17-41 [online]. Available at: http://ime.masfak.ni.ac.rs/index.php/IME/article/view/60 [Accessed: 19 February 2024].

Antic, V., Misic, D. & Manic, M. 2023b. Smart orthopedic implant: conceptual solution. In: 39th International Conference on Production Engineering - Serbia, Novi Sad, Serbia, pp.1-5, October 26-27. ISBN: 978-86-6022-610-7.

Atmojo, J.T., Sudaryanto, W.T., Widiyanto, A., Ernawati & Arradini, D. 2020. Telemedicine, Cost Effectiveness, and Patients Satisfaction: A Systematic Review. Journal of Health Policy and Management, 5(2), pp.103-107 [online]. Available at: https://thejhpm.com/index.php/thejhpm/article/view/172 [Accessed: 05 December 2023].

Bansal, D. 2012. Potential of Piezoelectric Sensors in Bio-signal Acquisition. Sensors and Transducers, 136(1), pp.147-157 [online]. Available at: https://www.sensorsportal.com/HTML/DIGEST/P_916.htm [Accessed: 05 December 2023].

Binyamin, G., Shafi, B.M. & Mery, C.M. 2006. Biomaterials: A primer for surgeons. Seminars in Pediatric Surgery, 15(4), pp.276-283. Available at: https://doi.org/10.1053/j.sempedsurg.2006.07.007.

Bizzoca, D., Vicenti, G., Caiaffa, V., Abate, A., Carolis, O.D., Carrozzo, M., Solarino, G. & Moretti, B. 2023. Assessment of fracture healing in orthopaedic trauma. Injury, 54(1), pp.S46-S52. Available at: https://doi.org/10.1016/j.injury.2020.11.014.

Borchani, W., Aono, K., Lajnef, N. & Chakrabartty, S. 2016. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device with Integrated Self-Powered Piezo-Floating-Gate Sensors. IEEE Transactions on Biomedical Engineering, 63(7), pp.1463-1472. Available at: http://doi.org/10.1109/TBME.2015.2496237.

Brogini, S., Sartori, M., Giavaresi, G., Cremascoli, P., Alemani, F., Bellini, D., Martini, L., Maglio, M., Pagani, S. & Fini, M. 2021. Osseointegration of additive manufacturing Ti–6Al–4V and Co–Cr–Mo alloys, with and without surface functionalization with hydroxyapatite and type I collagen. Journal of the Mechanical Behavior of Biomedical Materials, 115, art.number:104262. Available at: https://doi.org/10.1016/j.jmbbm.2020.104262.

Button, K.S., Ioanidis, J.P.A., Mokryzs, C., Noseka, B.A., Flint, J., Robinson, E.S.J. & Munafo, M.R. 2013. Confidence and precision increase with high statistical power. Nature Reviews Neuroscience, 14, art.number:585. Available at: https://doi.org/10.1038/nrn3475-c4.

Cheng, M. & Scattareggia, S. 2011. How to Select the Right Stepmotor for a Medical Device. MachineDesign.com [online]. Available at: https://www.machinedesign.com/markets/medical/article/21832379/how-to-select-the-right-stepmotor-for-a-medical-device [Accessed: 29 February 2024].

Chiurazzi, M., Garozzo, G. G., Dario, P. & Ciuti, G. 2020. Novel Capacitive-Based Sensor Technology for Augmented Proximity Detection. IEEE Sensors Journal, 20(12), pp.6624-6633. Available at: https://doi.org/10.1109/JSEN.2020.2972740.

Claes, L.E. & Cunningham, J.L. 2009. Monitoring the Mechanical Properties of Healing Bone. Clinical Orthopedic and Related Research, 467(8), pp.1964-1971. Available at: https://doi.org/10.1007/s11999-009-0752-7.

Coneicao, C., Completo, A. & Soares dos Santos Marco P. 2023. Ultrasensitive capacitive sensing system for smart medical devices with ability to monitor fracture healing stages. Journal of the Royal Society Interface, 20, art.number:20220818. Available at: https://doi.org/10.1098/rsif.2022.0818.

Cram, N. 2004. 10 - Careers, Roles, and Responsibilities. In: Clinical Engineering Handbook. Academic Press. Available at: https://doi.org/10.1016/B978-012226570-9/50012-0.

Ernst, M., Richards, R.G. & Windolf, M. 2020. Smart implants in fracture care – only buzzword or real opportunity? Injury, 52(2), pp.S101-S105. Available at: https://doi.org/10.1016/j.injury.2020.09.026.

Findik, F. 2020. Recent developments of metallic implants for biomedical applications. Periodical of Engineering and Natural Sciences, 8(1), pp.33-57 [online]. Available at: http://pen.ius.edu.ba/index.php/pen/article/view/988/487 fAccessed: 05.12.2024].

Francis, A. 2021. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(5), pp.744-764. Available at: https://doi.org/10.1002/jbm.b.34740.

Friis, E.A., DeCoster, D.A. & Thomas, J.C. 2017. 7 - Mechanical testing of fracture fixation devices. In: Friis, E.A. (Ed.) Mechanical Testing of Orthopaedic Implants, pp.131-141. Sawston, Cambridge, UK: Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100286-5.00007-X.

Green, S.R. & Gianchandani, Y.B. 2009. Wireless Magnetoelastic Monitoring of Biliary Stents. Journal of Microelectromechanical Systems, 18(1), pp.64-78, Available at: http://doi.org/10.1109/JMEMS.2008.2008568.

Harb, A.M. & Zaher, A.A. 2004. Nonlinear control of permanent magnet stepper motors. Communications in Nonlinear Science and Numerical Simulation 9(4), pp.443-458. Available at: https://doi.org/10.1016/S1007-5704(02)00133-8.

-ICLL International Center for Limb Lengthening. 2024. Limb lengthening: The process. Limblength.org [online]. Available at: https://www.limblength.org/treatments/limb-lengthening-the-process/ [Accessed: 1 March 2024].

Jacobs, J.J., Gilbert, J.L. & Urban, R.M. 1998. Current Concepts Review - Corrosion of Metal Orthopaedic Implants. The Journal of Bone & Joint Surgery, 80(2), pp.268-282. Available at: https://doi.org/10.2106/00004623-199802000-00015.

Jefferies, C., Al-Malaika, S. & Sheena, H.H. 2021. New and novel stabilisation approach for radiation-crosslinked Ultrahigh Molecular Weight Polyethylene (XL-UHMWPE) targeted for use in orthopaedic implants. Polymer Degradation and Stability, 183, art.number:109462. Available at: https://doi.org/10.1016/j.polymdegradstab.2020.109462.

Kausar, A. 2022. Sensing Materials: Nanocomposites. Encyclopedia of Sensors and Biosensors 2, pp.305-315. Available at: https://doi.org/10.1016/B978-0-12-822548-6.00048-0.

Kim, Y.-G., Song, J.-H., Hong, S. & Ahn, S.-H. 2022. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. npj Flexible Electronics 6, art.number:52. Available at: https://doi.org/10.1038/s41528-022-00186-4.

Kruse, C.S., Krowski, N., Rodriges, B., Tran, L., Jackeline, V. & Brooks, M. 2017. Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open, 7, e016242. Available at: https://doi.org/10.1136/bmjopen-2017-016242.

Kumar, K. 2021. Stepper Motors for Medical Applications. Portescap.com, 27 August [online]. Available at: https://www.portescap.com/en/newsroom/blog/2021/08/stepper-motors-for-medical-applications [Accessed: 19 February 2024].

Ledet, E.H., Liddle, B., Kradinova, K. & Harper, S. 2018. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innovative Entrepreneur in Health, 5, pp.41-51. Available at: https://doi.org/10.2147/IEH.S133518.

Li, W. & Li, J. 2022. The Development Direction of Information Security in Wireless Communication. Advances in Social Science, Education and Humanities Research, 666, pp.177-180 [online]. Available at: https://www.atlantis-press.com/proceedings/stehf-22/125975590 [Accessed: 05.12.2023].

Lin, M.C., Hu, D., Marmor, M., Herfat S.T., Bahney, C.S. & Maharbiz, M.M. 2019. Smart bone plates can monitor fracture healing. Scientific Reports, 9, art.number:2122. Available at: https://doi.org/10.1038/s41598-018-37784-0.

Naghdi, T., Ardalan, S., Asghari Adib, Z., Shafiri, A.R. & Golmogammadi, H. 2023. Moving towards smart biomedical sensing. Biosensors and Bioelectronics, 223, art.number:115009. Available at: https://doi.org/10.1016/j.bios.2022.115009.

Nicholson, J.A., Yapp, L.Z., Keating, J.F. & Simpson, A.H.R.W. 2021. Monitoring of fracture healing. Update on current and future imaging modalities to predict union. Injury, 52(2), pp.S29-S34. Available at: https://doi.org/10.1016/j.injury.2020.08.016.

O’Connor, C. & Kiourti, A. 2017. Wireless Sensors for Smart Orthopedic Implants. Journal of Bio- and Tribo-Corrosion, 3, art.number:20. Available at: https://doi.org/10.1007/s40735-017-0078-z.

Pelham, H., Benza, D., Millhouse, P.W., Carrington, N., Ariffuzamann, Md., Behrend, C.J., Anker, J.N. & DesJardins, J.D. 2017. Implantable strain sensor to monitor fracture healing with standard radiography. Scientific Reports, 7, art.number:1489. Available at: https://doi.org/10.1038/s41598-017-01009-7.

Piconi, C. 2017. 5 - Ceramics for joint replacement: Design and application of commercial bearings. In: Palmero, P., Cambier, F. & De Barra, E. (Eds.) Advances in Ceramic Biomaterials, pp.129-179. Sawston, Cambridge, UK: Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100881-2.00005-1.

Poinem, G.E.J., Brundavanam, S. & Fawcet, D. 2012. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2(6), pp.218-240. Available at: https://doi.org/10.5923/J.AJBE.20120206.02.

Rohani Shirvan, A., Nouri, A. & Wen, C. 2021. 12 - Structural polymer biomaterials, In: Wen, C. (Ed.) Woodhead Publishing Series in Biomaterials, Structural Biomaterials. Sawston, Cambridge, UK: Woodhead Publishing, pp.395-439. Available at: https://doi.org/10.1016/B978-0-12-818831-6.00010-0.

Sellei, R.M., Kobbe, P., Dienstknecht, T., Lichte, P., Pfeifer, R., Behrens, M., Brianza, S. & Pape, H.-C. 2015. Biomechanical properties of different external fixator frame configurations. European Journal of Trauma and Emergency Surgery, 41, pp.313-318. Available at: https://doi.org/10.1007/s00068-014-0436-1.

Shayesteh Moghaddam, N., Taheri Andani, M., Amerinatanzi, A., Haberlend, C., Huff, S., Miller, M., Elahinia, M. & Dean, D. 2016. Metals for bone implants: safety, design, and efficacy. Biomanufacturing Reviews, 1, art.number:1. Available at: https://doi.org/10.1007/s40898-016-0001-2.

Sheen, J.R., Mabrouk, A. & Garla, V.V. 2023. Fracture Healing Overview. National Library of Medicine, 8 April [online]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK551678/ [Accessed 28 March 2024].

Shekhawat, D., Singh, A., Bhardwaj, A. & Patnaik, A. 2021. A Short Review on Polymer, Metal and Ceramic Based Implant Materials. IOP Conferences Series: Materials Science and Engineering, 1017, art.number:012038. Available at: https://doi.org/10.1088/1757-899X/1017/1/012038.

Sirohi, J. & Chopra, I. 2000. Fundamental Understanding of Piezoelectric Strain Sensors. Journal of Intelligent Material Systems and Structures, 11(4), pp.246-257. Available at: https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0.

Soares dos Santos, M.P. & Bernardo R.M.C. 2022. Bioelectronic multifunctional bone implants: recent trends. Bioelectronic Medicine, 8, art.number:15. Available at: https://doi.org/10.1186/s42234-022-00097-9.

Solanke, S., Gaval, V. & Sanghavi, S. 2021. In vitro tribological investigation and osseointegration assessment for metallic orthopedic bioimplant materials. Materials Today: Proceedings, 44(6), pp.4173-4178. Available at: https://doi.org/10.1016/j.matpr.2020.10.528.

Sowjanya, V.H., Kiran, P., Ravi Kumar, V. & Chandu, B. 2018. Controlling a wireless stepper motor by rf transmitter and receiver using arduino. International Journal of Research and Analytical Reviews, 5(1), pp.121-125 [online]. Available at: https://www.ijrar.org/papers/IJRAR1CXP024.pdf [Accessed 28 March 2024].

Sun, R., Zhang, B., Yang, L., Zhang, W., Farrow, I., Scrapa, F. & Rossiter, J. 2018. Kirigami stretchable strain sensors with enhanced piezoelectricity induced by topological electrodes. Applied Physics Letters, 112(25), art.number:251904. Available at: https://doi.org/10.1063/1.5025025.

Sun, G., Matsui, T., Watai Y., Kim, S., Kirimoto, T., Suzuki, S. & Hakozaki, Y. 2018. Vital-SCOPE: Design and Evaluation of a Smart Vital Sign Monitor for Simultaneous Measurement of Pulse Rate, Respiratory Rate, and Body Temperature for Patient Monitoring. Journal of Sensors, art.ID:4371872. Available at: https://doi.org/10.1155/2018/4371872.

Taheri Andani, M., Moghaddam, N.S., Haberland, C., Dean, D., Miler, M.J. & Elahinia, M. 2014. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomaterialia 10(10), pp.4058-4070. Available at: https://doi.org/10.1016/j.actbio.2014.06.025.

Tandon, B., Blaker, J.J. & Cartmell S.H. 2018. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73, pp.1-20. Available at: https://doi.org/10.1016/j.actbio.2018.04.026.

Taylor, H.R. 1997. Data Acquisition for Sensor Systems. Chapman & Hall. ISBN: 0-412-78560-9.

Thomas, L. 2023. What is Telemedicine? News-Medical.net, 18 January [online]. Available at: https://www.news-medical.net/health/What-is-Telemedicine.aspx [Accessed: 03 April 2024].

Xu, W., Lu, X., Tian, J., Huang, C., Chen, M., Yan, Y., Wang, L., Qu, X. & Wen, C. 2020. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications. Journal of Materials Science & Technology, 41, pp.191-198. Available at: https://doi.org/10.1016/j.jmst.2019.08.041.

Published
2024/06/10
Section
Review Papers