Analitičke i numeričke metode za procenu verovatnoće interlaminarnog loma u Modu 1 kompozitnih struktura putem testa ljuštenja

  • Nadia Benchaib Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0005-8797-2279
  • Belaïd Mechab Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0000-7483-5527
  • Malika Medjahdi Univerzitet Sidi Bel Abes, Laboratorija za primenu plazme, elektrostatike i elektromagnetne kompatibilnosti, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0003-2940-4538
  • Aicha Metehri Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-2221-6833
  • Mokadem Salem Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0001-7558-714X
  • Bel Abbes Bachir Bouiadjra Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-1925-7194
Ključne reči: kompozit, delaminacija, test ljuštenja, metoda VCC, trajnost

Sažetak


Uvod/cilj: U radu je korišćen numerički i analitički pristup za predviđanje verovatnoće interlaminarnog loma u Modu 1 kompozitne strukture tokom testa ljuštenja.

Metode: Metoda konačnih elemenata, koja uključuje metodu virtuelnog zatvaranja prsline (Virtual Crack Closure – VCC), koristi se za ispitivanje delaminacije kompozitne strukture. Istražuju se efekti mnogih aspekata kao što su dimenzije, pravci pružanja vlakana i svojstva kompozita.

Rezultati: Numerički rezultati se u velikoj meri slažu sa analitičkim rešenjem iz aktuelne literature. Tehnika Monte Karlo predviđa funkciju distribucije oštećenja kompozita. Verovatnoća strukturnog loma procenjuje se uzimanjem u obzir i nesigurnosti modela i statističke nesigurnosti povezane sa osnovnim varijablama.

Zaključak: Funkcija gustine verovatnoće izvedena je uklapanjem specifičnih teorijskih modela u histogram. Trajnost kompozitnih struktura zavisi, pre svega, od njihovih mehaničkih svojstava.

Reference

Aveiga, D. & Ribeiro, M.L. 2018. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering, 2018(1), art.number :1861268. Available at: https://doi.org/10.1155/2018/1861268.

Cepero, F, García, I.G., Justo, J., Mantič, V. & París, F. 2019. An experimental study of the translaminar fracture toughnesses in composites for different crack growth directions, parallel and transverse to the fiber direction. Composites Science and Technology 181, art.number:107679. Available at: https://doi.org/10.1016/j.compscitech.2019.107679.

Das, M., Sahu, S. & Parhi, D.R. 2021. Composite materials and their damage detection using AI techniques for aerospace application: A brief review. Materials Today: Proceedings, 44(1), pp.955-960. Available at: https://doi.org/10.1016/j.matpr.2020.11.005.

-Dassault Systems, The 3D EXPERIENCE platform. 2014. Simulia: AbaqusFinite Element Analysis for Mechanical Engineering and Civil Engineering [online]. Available at: https://www.3ds.com/products/simulia/abaqus [Accessed: 25 March 2024].

De Carvalho, N.V., Chen, B.Y., Pinho, S.T., Ratcliffe, J.G., Baiz, P.M. & Tay, T.E. 2015. Modeling delamination migration in cross-ply tape laminates. Composites Part A: Applied Science and Manufacturing, 71, pp.192-203. Available at: https://doi.org/10.1016/j.compositesa.2015.01.021.

Debski, H., Rozylo, P., Wysmulski, P., Falkowicz, K. & Ferdynus, M. 2021. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B: Engineering, 226, art.number:109346. Available at: https://doi.org/10.1016/J.Compositesb.2021.109346.

Fotouhi, M., Damghani, M., Leong, M.C., Fotouhi, S., Jalalvand, M. & Wisnom, M.R. 2020. A comparative study on glass and carbon fiber reinforced laminated composites in scaled quasi-static indentation tests. Composite Structures, 245, art.number:112327. Available at: https://doi.org/10.1016/j.compstruct.2020.112327.

Gliszczyński, A. & Kubiak, T. 2017. Load-carrying capacity of thin-walled composite beams subject to pure bending. Thin-Walled Structures, 115, pp.76-85. Available at: https://doi.org/10.1016/j.tws.2017.02.009.

Griffith, A.A. 1921. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221, pp.163-198. Available at: https://doi.org/10.1098/rsta.1921.0006.

Hatti, P.S., Sampath Kumar, L., Somanakatti, A.B. & Rakshith, M.N. 2022. Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers. Materials Today: Proceedings, 54(2), pp.137-140. Available at: https://doi.org/10.1016/j.matpr.2021.08.196.

Ibrahim, N.C., Boualem, S. & Belaïd, M. 2018. Analysis of the crack-crack interaction effect initiated in aeronautical structures and repaired by composite patch. Frattura Ed Integrità Strutturale, 12(46), pp.140-149. Available at: https://doi.org/10.3221/IGF-ESIS.46.14.

Jokinen, J. & Kanerva, M. 2019. Simulation of Delamination Growth at CFRP-TungstenAerospace Laminates Using VCCT and CZM Modelling Techniques. Applied Composite Materials, 26, pp.709-721. Available at: https://doi.org/10.1007/s10443-018-9746-5.

Kaźmierczyk, F., Urbaniak, M., Świniarski, J. & Kubiak, T. 2022. Influence of boundary conditions on the behavior of composite channel section subjected to pure bending – Experimental study. Composite Structures, 279, art.number:114727. Available at: https://doi.org/10.1016/j.compstruct.2021.114727.

Kishore, C., Jaiswal, R., Bhatt, V., Jugran, S., Rawat, D. & Verma, D. 2021. Analysis of glass fiber reinforced with epoxy resin using FEM. Materials Today: Proceedings, 46(20), pp.11120-11128. Available at: https://doi.org/10.1016/j.matpr.2021.02.273.

Krueger, R. 2015. 1 - The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In: Woodhead Publishing Series in Composites Science and Engineering, Numerical Modelling of Failure in Advanced Composite Materials, pp.3-53. Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100332-9.00001-3.

Madukauwa-David, I. & Drissi-Habti, M. 2016. Numerical simulation of the mechanical behavior of a large, intelligent composite platform under static loads. Composites Part B: Engineering, 88, pp.19-25. Available at: https://doi.org/10.1016/J.Compositesb.2015.10.041.

Mechab, B., Chama, M., Kaddouri, K.& Slimani, D. 2016. Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch. Steel and Composite Structures, 20(6), pp.1173-1182. Available at: https://doi.org/10.12989/scs.2016.20.6.1173.

Rozylo, P. 2022. Comparison of Failure for Thin-Walled Composite Columns. Materials, 15(1), art.number:167. Available at: https://doi.org/10.3390/Ma15010167.

Rozylo, P. 2021. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures, 262, art.number:113598. Available at: https://doi.org/10.1016/j.compstruct.2021.113598.

Rozylo, P., Debski, H., Falkowicz, K., Wysmulski, P., Pasnik, J. & Kral, J. 2021. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials, 14(6), art.number:1506. Available at: https://doi.org/10.3390/ma14061506.

Rybicki, E.F. & Kanninen, M.F. 1977. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4), pp.931-938. Available at: https://doi.org/10.1016/0013-7944(77)90013-3.

Salem, M., Bachir Bouiadjra, B.A., Mechab, B. & Kaddouri, K. 2015. Elastic-plastic analysis of the J integral for repaired cracks in plates”. Advances in materials Research, 4(2), pp.87-96. Available at: https://doi.org/10.12989/AMR.2015.4.2.087.

Serier, N., Mechab, B., Mhamdia, R. & Serier, B. 2016. A new formulation of the J integral of bonded composite repair in aircraft structures. Structural Engineering and Mechanics, 58(5), pp.745-755. Available at: https://doi.org/10.12989/sem.2016.58.5.745.

Turon, A., Camanho, P.P., Costa, J. & Renart, J. 2010. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Composite Structures, 92(8), pp.1857-1864. Available at: https://doi.org/10.1016/J.Compstruct.2010.01.012.

Yu, Z., Zhang, J., Shen, J. & Chen, H. 2021. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nuclear Materials and Energy, 29, art.number:101063. Available at: https://doi.org/10.1016/J.Nme.2021.101063.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi