Analitičke i numeričke metode za procenu verovatnoće interlaminarnog loma u Modu 1 kompozitnih struktura putem testa ljuštenja
Sažetak
Uvod/cilj: U radu je korišćen numerički i analitički pristup za predviđanje verovatnoće interlaminarnog loma u Modu 1 kompozitne strukture tokom testa ljuštenja.
Metode: Metoda konačnih elemenata, koja uključuje metodu virtuelnog zatvaranja prsline (Virtual Crack Closure – VCC), koristi se za ispitivanje delaminacije kompozitne strukture. Istražuju se efekti mnogih aspekata kao što su dimenzije, pravci pružanja vlakana i svojstva kompozita.
Rezultati: Numerički rezultati se u velikoj meri slažu sa analitičkim rešenjem iz aktuelne literature. Tehnika Monte Karlo predviđa funkciju distribucije oštećenja kompozita. Verovatnoća strukturnog loma procenjuje se uzimanjem u obzir i nesigurnosti modela i statističke nesigurnosti povezane sa osnovnim varijablama.
Zaključak: Funkcija gustine verovatnoće izvedena je uklapanjem specifičnih teorijskih modela u histogram. Trajnost kompozitnih struktura zavisi, pre svega, od njihovih mehaničkih svojstava.
Reference
Aveiga, D. & Ribeiro, M.L. 2018. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering, 2018(1), art.number :1861268. Available at: https://doi.org/10.1155/2018/1861268.
Cepero, F, García, I.G., Justo, J., Mantič, V. & París, F. 2019. An experimental study of the translaminar fracture toughnesses in composites for different crack growth directions, parallel and transverse to the fiber direction. Composites Science and Technology 181, art.number:107679. Available at: https://doi.org/10.1016/j.compscitech.2019.107679.
Das, M., Sahu, S. & Parhi, D.R. 2021. Composite materials and their damage detection using AI techniques for aerospace application: A brief review. Materials Today: Proceedings, 44(1), pp.955-960. Available at: https://doi.org/10.1016/j.matpr.2020.11.005.
-Dassault Systems, The 3D EXPERIENCE platform. 2014. Simulia: AbaqusFinite Element Analysis for Mechanical Engineering and Civil Engineering [online]. Available at: https://www.3ds.com/products/simulia/abaqus [Accessed: 25 March 2024].
De Carvalho, N.V., Chen, B.Y., Pinho, S.T., Ratcliffe, J.G., Baiz, P.M. & Tay, T.E. 2015. Modeling delamination migration in cross-ply tape laminates. Composites Part A: Applied Science and Manufacturing, 71, pp.192-203. Available at: https://doi.org/10.1016/j.compositesa.2015.01.021.
Debski, H., Rozylo, P., Wysmulski, P., Falkowicz, K. & Ferdynus, M. 2021. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B: Engineering, 226, art.number:109346. Available at: https://doi.org/10.1016/J.Compositesb.2021.109346.
Fotouhi, M., Damghani, M., Leong, M.C., Fotouhi, S., Jalalvand, M. & Wisnom, M.R. 2020. A comparative study on glass and carbon fiber reinforced laminated composites in scaled quasi-static indentation tests. Composite Structures, 245, art.number:112327. Available at: https://doi.org/10.1016/j.compstruct.2020.112327.
Gliszczyński, A. & Kubiak, T. 2017. Load-carrying capacity of thin-walled composite beams subject to pure bending. Thin-Walled Structures, 115, pp.76-85. Available at: https://doi.org/10.1016/j.tws.2017.02.009.
Griffith, A.A. 1921. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221, pp.163-198. Available at: https://doi.org/10.1098/rsta.1921.0006.
Hatti, P.S., Sampath Kumar, L., Somanakatti, A.B. & Rakshith, M.N. 2022. Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers. Materials Today: Proceedings, 54(2), pp.137-140. Available at: https://doi.org/10.1016/j.matpr.2021.08.196.
Ibrahim, N.C., Boualem, S. & Belaïd, M. 2018. Analysis of the crack-crack interaction effect initiated in aeronautical structures and repaired by composite patch. Frattura Ed Integrità Strutturale, 12(46), pp.140-149. Available at: https://doi.org/10.3221/IGF-ESIS.46.14.
Jokinen, J. & Kanerva, M. 2019. Simulation of Delamination Growth at CFRP-TungstenAerospace Laminates Using VCCT and CZM Modelling Techniques. Applied Composite Materials, 26, pp.709-721. Available at: https://doi.org/10.1007/s10443-018-9746-5.
Kaźmierczyk, F., Urbaniak, M., Świniarski, J. & Kubiak, T. 2022. Influence of boundary conditions on the behavior of composite channel section subjected to pure bending – Experimental study. Composite Structures, 279, art.number:114727. Available at: https://doi.org/10.1016/j.compstruct.2021.114727.
Kishore, C., Jaiswal, R., Bhatt, V., Jugran, S., Rawat, D. & Verma, D. 2021. Analysis of glass fiber reinforced with epoxy resin using FEM. Materials Today: Proceedings, 46(20), pp.11120-11128. Available at: https://doi.org/10.1016/j.matpr.2021.02.273.
Krueger, R. 2015. 1 - The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In: Woodhead Publishing Series in Composites Science and Engineering, Numerical Modelling of Failure in Advanced Composite Materials, pp.3-53. Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100332-9.00001-3.
Madukauwa-David, I. & Drissi-Habti, M. 2016. Numerical simulation of the mechanical behavior of a large, intelligent composite platform under static loads. Composites Part B: Engineering, 88, pp.19-25. Available at: https://doi.org/10.1016/J.Compositesb.2015.10.041.
Mechab, B., Chama, M., Kaddouri, K.& Slimani, D. 2016. Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch. Steel and Composite Structures, 20(6), pp.1173-1182. Available at: https://doi.org/10.12989/scs.2016.20.6.1173.
Rozylo, P. 2022. Comparison of Failure for Thin-Walled Composite Columns. Materials, 15(1), art.number:167. Available at: https://doi.org/10.3390/Ma15010167.
Rozylo, P. 2021. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures, 262, art.number:113598. Available at: https://doi.org/10.1016/j.compstruct.2021.113598.
Rozylo, P., Debski, H., Falkowicz, K., Wysmulski, P., Pasnik, J. & Kral, J. 2021. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials, 14(6), art.number:1506. Available at: https://doi.org/10.3390/ma14061506.
Rybicki, E.F. & Kanninen, M.F. 1977. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4), pp.931-938. Available at: https://doi.org/10.1016/0013-7944(77)90013-3.
Salem, M., Bachir Bouiadjra, B.A., Mechab, B. & Kaddouri, K. 2015. Elastic-plastic analysis of the J integral for repaired cracks in plates”. Advances in materials Research, 4(2), pp.87-96. Available at: https://doi.org/10.12989/AMR.2015.4.2.087.
Serier, N., Mechab, B., Mhamdia, R. & Serier, B. 2016. A new formulation of the J integral of bonded composite repair in aircraft structures. Structural Engineering and Mechanics, 58(5), pp.745-755. Available at: https://doi.org/10.12989/sem.2016.58.5.745.
Turon, A., Camanho, P.P., Costa, J. & Renart, J. 2010. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Composite Structures, 92(8), pp.1857-1864. Available at: https://doi.org/10.1016/J.Compstruct.2010.01.012.
Yu, Z., Zhang, J., Shen, J. & Chen, H. 2021. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nuclear Materials and Energy, 29, art.number:101063. Available at: https://doi.org/10.1016/J.Nme.2021.101063.
Sva prava zadržana (c) 2024 Nadia Benchaib, Belaïd Mechab, Malika Medjahdi, Aicha Metehri, Mokadem Salem, Bel Abbes Bachir Bouiadjra
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).