Analitičke i numeričke metode za procenu verovatnoće interlaminarnog loma u Modu 1 kompozitnih struktura putem testa ljuštenja
Sažetak
Uvod/cilj: U radu je korišćen numerički i analitički pristup za predviđanje verovatnoće interlaminarnog loma u Modu 1 kompozitne strukture tokom testa ljuštenja.
Metode: Metoda konačnih elemenata, koja uključuje metodu virtuelnog zatvaranja prsline (Virtual Crack Closure – VCC), koristi se za ispitivanje delaminacije kompozitne strukture. Istražuju se efekti mnogih aspekata kao što su dimenzije, pravci pružanja vlakana i svojstva kompozita.
Rezultati: Numerički rezultati se u velikoj meri slažu sa analitičkim rešenjem iz aktuelne literature. Tehnika Monte Karlo predviđa funkciju distribucije oštećenja kompozita. Verovatnoća strukturnog loma procenjuje se uzimanjem u obzir i nesigurnosti modela i statističke nesigurnosti povezane sa osnovnim varijablama.
Zaključak: Funkcija gustine verovatnoće izvedena je uklapanjem specifičnih teorijskih modela u histogram. Trajnost kompozitnih struktura zavisi, pre svega, od njihovih mehaničkih svojstava.
Reference
Aveiga, D. & Ribeiro, M.L. 2018. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering, 2018(1), art.number :1861268. Available at: https://doi.org/10.1155/2018/1861268.
Cepero, F, García, I.G., Justo, J., Mantič, V. & París, F. 2019. An experimental study of the translaminar fracture toughnesses in composites for different crack growth directions, parallel and transverse to the fiber direction. Composites Science and Technology 181, art.number:107679. Available at: https://doi.org/10.1016/j.compscitech.2019.107679.
Das, M., Sahu, S. & Parhi, D.R. 2021. Composite materials and their damage detection using AI techniques for aerospace application: A brief review. Materials Today: Proceedings, 44(1), pp.955-960. Available at: https://doi.org/10.1016/j.matpr.2020.11.005.
-Dassault Systems, The 3D EXPERIENCE platform. 2014. Simulia: AbaqusFinite Element Analysis for Mechanical Engineering and Civil Engineering [online]. Available at: https://www.3ds.com/products/simulia/abaqus [Accessed: 25 March 2024].
De Carvalho, N.V., Chen, B.Y., Pinho, S.T., Ratcliffe, J.G., Baiz, P.M. & Tay, T.E. 2015. Modeling delamination migration in cross-ply tape laminates. Composites Part A: Applied Science and Manufacturing, 71, pp.192-203. Available at: https://doi.org/10.1016/j.compositesa.2015.01.021.
Debski, H., Rozylo, P., Wysmulski, P., Falkowicz, K. & Ferdynus, M. 2021. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B: Engineering, 226, art.number:109346. Available at: https://doi.org/10.1016/J.Compositesb.2021.109346.
Fotouhi, M., Damghani, M., Leong, M.C., Fotouhi, S., Jalalvand, M. & Wisnom, M.R. 2020. A comparative study on glass and carbon fiber reinforced laminated composites in scaled quasi-static indentation tests. Composite Structures, 245, art.number:112327. Available at: https://doi.org/10.1016/j.compstruct.2020.112327.
Gliszczyński, A. & Kubiak, T. 2017. Load-carrying capacity of thin-walled composite beams subject to pure bending. Thin-Walled Structures, 115, pp.76-85. Available at: https://doi.org/10.1016/j.tws.2017.02.009.
Griffith, A.A. 1921. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221, pp.163-198. Available at: https://doi.org/10.1098/rsta.1921.0006.
Hatti, P.S., Sampath Kumar, L., Somanakatti, A.B. & Rakshith, M.N. 2022. Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers. Materials Today: Proceedings, 54(2), pp.137-140. Available at: https://doi.org/10.1016/j.matpr.2021.08.196.
Ibrahim, N.C., Boualem, S. & Belaïd, M. 2018. Analysis of the crack-crack interaction effect initiated in aeronautical structures and repaired by composite patch. Frattura Ed Integrità Strutturale, 12(46), pp.140-149. Available at: https://doi.org/10.3221/IGF-ESIS.46.14.
Jokinen, J. & Kanerva, M. 2019. Simulation of Delamination Growth at CFRP-TungstenAerospace Laminates Using VCCT and CZM Modelling Techniques. Applied Composite Materials, 26, pp.709-721. Available at: https://doi.org/10.1007/s10443-018-9746-5.
Kaźmierczyk, F., Urbaniak, M., Świniarski, J. & Kubiak, T. 2022. Influence of boundary conditions on the behavior of composite channel section subjected to pure bending – Experimental study. Composite Structures, 279, art.number:114727. Available at: https://doi.org/10.1016/j.compstruct.2021.114727.
Kishore, C., Jaiswal, R., Bhatt, V., Jugran, S., Rawat, D. & Verma, D. 2021. Analysis of glass fiber reinforced with epoxy resin using FEM. Materials Today: Proceedings, 46(20), pp.11120-11128. Available at: https://doi.org/10.1016/j.matpr.2021.02.273.
Krueger, R. 2015. 1 - The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In: Woodhead Publishing Series in Composites Science and Engineering, Numerical Modelling of Failure in Advanced Composite Materials, pp.3-53. Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100332-9.00001-3.
Madukauwa-David, I. & Drissi-Habti, M. 2016. Numerical simulation of the mechanical behavior of a large, intelligent composite platform under static loads. Composites Part B: Engineering, 88, pp.19-25. Available at: https://doi.org/10.1016/J.Compositesb.2015.10.041.
Mechab, B., Chama, M., Kaddouri, K.& Slimani, D. 2016. Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch. Steel and Composite Structures, 20(6), pp.1173-1182. Available at: https://doi.org/10.12989/scs.2016.20.6.1173.
Rozylo, P. 2022. Comparison of Failure for Thin-Walled Composite Columns. Materials, 15(1), art.number:167. Available at: https://doi.org/10.3390/Ma15010167.
Rozylo, P. 2021. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures, 262, art.number:113598. Available at: https://doi.org/10.1016/j.compstruct.2021.113598.
Rozylo, P., Debski, H., Falkowicz, K., Wysmulski, P., Pasnik, J. & Kral, J. 2021. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials, 14(6), art.number:1506. Available at: https://doi.org/10.3390/ma14061506.
Rybicki, E.F. & Kanninen, M.F. 1977. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4), pp.931-938. Available at: https://doi.org/10.1016/0013-7944(77)90013-3.
Salem, M., Bachir Bouiadjra, B.A., Mechab, B. & Kaddouri, K. 2015. Elastic-plastic analysis of the J integral for repaired cracks in plates”. Advances in materials Research, 4(2), pp.87-96. Available at: https://doi.org/10.12989/AMR.2015.4.2.087.
Serier, N., Mechab, B., Mhamdia, R. & Serier, B. 2016. A new formulation of the J integral of bonded composite repair in aircraft structures. Structural Engineering and Mechanics, 58(5), pp.745-755. Available at: https://doi.org/10.12989/sem.2016.58.5.745.
Turon, A., Camanho, P.P., Costa, J. & Renart, J. 2010. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Composite Structures, 92(8), pp.1857-1864. Available at: https://doi.org/10.1016/J.Compstruct.2010.01.012.
Yu, Z., Zhang, J., Shen, J. & Chen, H. 2021. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nuclear Materials and Energy, 29, art.number:101063. Available at: https://doi.org/10.1016/J.Nme.2021.101063.
Sva prava zadržana (c) 2024 Nadia Benchaib, Belaïd Mechab, Malika Medjahdi, Aicha Metehri, Mokadem Salem, Bel Abbes Bachir Bouiadjra
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).