Analytical and numerical methods for estimating the probability of interlaminar fracture in Mode I of composite structures under the peel test
Abstract
Introduction/purpose: The present work utilizes a numerical and analytical approach to predict the likelihood of interlaminar fracture in Mode I of a composite structure under the peel test.
Methods:The finite element approach, which incorporates the Virtual Crack Closure (VCCT) method, is utilized to examine the delamination of the composite structure. The research investigated the effects of many aspects, including dimension, fiber alignment, and composite properties.
Results: The numerical results significantly concur with the analytical solution recorded in the current body of literature. The Monte Carlo technique predicts the distribution function of composite damage. As previously stated, the probability of structural failure is assessed by considering both the model's uncertainty and the statistical uncertainty linked to the essential variables.
Conclusion: The probability density function (pdf) is derived by fitting specific theoretical models to the histogram. The durability of composite structures is primarily dependent on their mechanical properties.
References
Aveiga, D. & Ribeiro, M.L. 2018. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering, 2018(1), art.number :1861268. Available at: https://doi.org/10.1155/2018/1861268.
Cepero, F, García, I.G., Justo, J., Mantič, V. & París, F. 2019. An experimental study of the translaminar fracture toughnesses in composites for different crack growth directions, parallel and transverse to the fiber direction. Composites Science and Technology 181, art.number:107679. Available at: https://doi.org/10.1016/j.compscitech.2019.107679.
Das, M., Sahu, S. & Parhi, D.R. 2021. Composite materials and their damage detection using AI techniques for aerospace application: A brief review. Materials Today: Proceedings, 44(1), pp.955-960. Available at: https://doi.org/10.1016/j.matpr.2020.11.005.
-Dassault Systems, The 3D EXPERIENCE platform. 2014. Simulia: AbaqusFinite Element Analysis for Mechanical Engineering and Civil Engineering [online]. Available at: https://www.3ds.com/products/simulia/abaqus [Accessed: 25 March 2024].
De Carvalho, N.V., Chen, B.Y., Pinho, S.T., Ratcliffe, J.G., Baiz, P.M. & Tay, T.E. 2015. Modeling delamination migration in cross-ply tape laminates. Composites Part A: Applied Science and Manufacturing, 71, pp.192-203. Available at: https://doi.org/10.1016/j.compositesa.2015.01.021.
Debski, H., Rozylo, P., Wysmulski, P., Falkowicz, K. & Ferdynus, M. 2021. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B: Engineering, 226, art.number:109346. Available at: https://doi.org/10.1016/J.Compositesb.2021.109346.
Fotouhi, M., Damghani, M., Leong, M.C., Fotouhi, S., Jalalvand, M. & Wisnom, M.R. 2020. A comparative study on glass and carbon fiber reinforced laminated composites in scaled quasi-static indentation tests. Composite Structures, 245, art.number:112327. Available at: https://doi.org/10.1016/j.compstruct.2020.112327.
Gliszczyński, A. & Kubiak, T. 2017. Load-carrying capacity of thin-walled composite beams subject to pure bending. Thin-Walled Structures, 115, pp.76-85. Available at: https://doi.org/10.1016/j.tws.2017.02.009.
Griffith, A.A. 1921. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221, pp.163-198. Available at: https://doi.org/10.1098/rsta.1921.0006.
Hatti, P.S., Sampath Kumar, L., Somanakatti, A.B. & Rakshith, M.N. 2022. Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers. Materials Today: Proceedings, 54(2), pp.137-140. Available at: https://doi.org/10.1016/j.matpr.2021.08.196.
Ibrahim, N.C., Boualem, S. & Belaïd, M. 2018. Analysis of the crack-crack interaction effect initiated in aeronautical structures and repaired by composite patch. Frattura Ed Integrità Strutturale, 12(46), pp.140-149. Available at: https://doi.org/10.3221/IGF-ESIS.46.14.
Jokinen, J. & Kanerva, M. 2019. Simulation of Delamination Growth at CFRP-TungstenAerospace Laminates Using VCCT and CZM Modelling Techniques. Applied Composite Materials, 26, pp.709-721. Available at: https://doi.org/10.1007/s10443-018-9746-5.
Kaźmierczyk, F., Urbaniak, M., Świniarski, J. & Kubiak, T. 2022. Influence of boundary conditions on the behavior of composite channel section subjected to pure bending – Experimental study. Composite Structures, 279, art.number:114727. Available at: https://doi.org/10.1016/j.compstruct.2021.114727.
Kishore, C., Jaiswal, R., Bhatt, V., Jugran, S., Rawat, D. & Verma, D. 2021. Analysis of glass fiber reinforced with epoxy resin using FEM. Materials Today: Proceedings, 46(20), pp.11120-11128. Available at: https://doi.org/10.1016/j.matpr.2021.02.273.
Krueger, R. 2015. 1 - The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In: Woodhead Publishing Series in Composites Science and Engineering, Numerical Modelling of Failure in Advanced Composite Materials, pp.3-53. Woodhead Publishing. Available at: https://doi.org/10.1016/B978-0-08-100332-9.00001-3.
Madukauwa-David, I. & Drissi-Habti, M. 2016. Numerical simulation of the mechanical behavior of a large, intelligent composite platform under static loads. Composites Part B: Engineering, 88, pp.19-25. Available at: https://doi.org/10.1016/J.Compositesb.2015.10.041.
Mechab, B., Chama, M., Kaddouri, K.& Slimani, D. 2016. Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch. Steel and Composite Structures, 20(6), pp.1173-1182. Available at: https://doi.org/10.12989/scs.2016.20.6.1173.
Rozylo, P. 2022. Comparison of Failure for Thin-Walled Composite Columns. Materials, 15(1), art.number:167. Available at: https://doi.org/10.3390/Ma15010167.
Rozylo, P. 2021. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures, 262, art.number:113598. Available at: https://doi.org/10.1016/j.compstruct.2021.113598.
Rozylo, P., Debski, H., Falkowicz, K., Wysmulski, P., Pasnik, J. & Kral, J. 2021. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials, 14(6), art.number:1506. Available at: https://doi.org/10.3390/ma14061506.
Rybicki, E.F. & Kanninen, M.F. 1977. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4), pp.931-938. Available at: https://doi.org/10.1016/0013-7944(77)90013-3.
Salem, M., Bachir Bouiadjra, B.A., Mechab, B. & Kaddouri, K. 2015. Elastic-plastic analysis of the J integral for repaired cracks in plates”. Advances in materials Research, 4(2), pp.87-96. Available at: https://doi.org/10.12989/AMR.2015.4.2.087.
Serier, N., Mechab, B., Mhamdia, R. & Serier, B. 2016. A new formulation of the J integral of bonded composite repair in aircraft structures. Structural Engineering and Mechanics, 58(5), pp.745-755. Available at: https://doi.org/10.12989/sem.2016.58.5.745.
Turon, A., Camanho, P.P., Costa, J. & Renart, J. 2010. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Composite Structures, 92(8), pp.1857-1864. Available at: https://doi.org/10.1016/J.Compstruct.2010.01.012.
Yu, Z., Zhang, J., Shen, J. & Chen, H. 2021. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nuclear Materials and Energy, 29, art.number:101063. Available at: https://doi.org/10.1016/J.Nme.2021.101063.
Copyright (c) 2024 Nadia Benchaib, Belaïd Mechab, Malika Medjahdi, Aicha Metehri, Mokadem Salem, Bel Abbes Bachir Bouiadjra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).