Neka razmatranja o ukupnom vremenu zaustavljanja za Kolacov problem

Ključne reči: Kolacova hipoteza, ponavljanja, statistička analiza, aproksimacija krive

Sažetak


Uvod/cilj: Razmotrena je Kolacova pretpostavka i potrebno vreme za zaustavljanje rekurzivne transformacije.

Metode: Korišćena je statistička analiza vremena zaustavljanja.

Rezultati: Statistički pristup pokazuje da je verovatnoća pronalaženja beskonačnog vremena zaustavljanja, što narušava Kolacovu hipotezu, izuzetno niska.

Zaključak: Verovatnoća odabira tačno jednog atoma u celokupnom univerzumu je za više od 61 reda veličine verovatnija od nailaženja brojnog niza sa beskonačnim vremenom zaustavljanja u Kolacovom problemu.

 

Reference

Applegate, D. & Lagarias, J.C. 1995. Density bounds for the 3x + 1 problem. I. Tree-search method. Mathematics of Computation, 64(209), pp.411-426. Available at: https://doi.org/10.1090/S0025-5718-1995-1270612-0.

Applegate, D. & Lagarias, J.C. 1995. Density Bounds for the 3x + 1 Problem. II. Krasikov Inequalities. Mathematics of Computation 64(209), pp.427-438. Available at: https://doi.org/10.1090/S0025-5718-1995-1270613-2.

Fabiano, N., Mirkov, N. & Radenović, S. 2021. Collatz hypothesis and Planck’s black body radiation. Journal of Siberian Federal University. Mathematics & Physics, 17(3), pp.408-414 [online]. Available at: https://www.mathnet.ru/eng/jsfu/v17/i3/p408 [Accessed: 4 April 2024].

Fabiano, N., Mirkov N., Mitrović, Z.D. & Radenović S. 2023. Chapter 3: Collatz Hypothesis and Kurepa’s Conjecture. In: Advances in Number Theory and Applied Analysis, pp.31-50. Available at: https://doi.org/10.1142/9789811272608_0003.

Guy, R.K. 2004. Unsolved Problems in Number Theory, Third Edition. Springer Science & Business Media. ISBN: 978-0387-20860-2.

Kurtz, S.A. & Simon, J. 2007. The Undecidability of the Generalized Collatz Problem. In: Cai, JY., Cooper, S.B. & Zhu, H. (Eds.) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, 4484. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-540-72504-6_49.

Lagarias, J.C. 1985. The 3x+1 Problem and its Generalizations. The American Mathematical Monthly, 92(1), pp.3-23. Available at: https://doi.org/10.1080/00029890.1985.11971528.

MacTutor. 2024. Collatz conjecture. MacTutor [online]. Available at: https://mathshistory.st-andrews.ac.uk/Biographies/Collatz [Accessed: 4 April 2024].

Roosendaal, E. 2024. On the 3x + 1 problem [online]. Available at: http://www.ericr.nl/wondrous/delrecs.html [Accessed: 4 April 2024].

Weisstein, E.W. 2024. Collatz Problem. MathWorld–A Wolfram Web Resource [online]. Available at: https://mathworld.wolfram.com/CollatzProblem.html [Accessed: 4 April 2024].

Objavljeno
2024/09/28
Rubrika
Originalni naučni radovi