Some considerations on the total stopping time for the Collatz problem

Keywords: Collatz conjecture, recurrences, statistical analysis, curve fitting

Abstract


Introduction/purpose: The Collatz conjecture has been considered and the stopping time needed for the recursive transformation to end has been investigated.

Methods: A statistical analysis on the stopping time has been used.

Results: The statistical approach shows that the probability of finding an infinite stopping time, that is, a violation of the Collatz conjecture, is extremely low.

Conclusion: Picking precisely one particular atom in the Universe is still more favorable, by more than 61 orders of magnitude, than encountering an infinite total stopping time.

References

Applegate, D. & Lagarias, J.C. 1995. Density bounds for the 3x + 1 problem. I. Tree-search method. Mathematics of Computation, 64(209), pp.411-426. Available at: https://doi.org/10.1090/S0025-5718-1995-1270612-0.

Applegate, D. & Lagarias, J.C. 1995. Density Bounds for the 3x + 1 Problem. II. Krasikov Inequalities. Mathematics of Computation 64(209), pp.427-438. Available at: https://doi.org/10.1090/S0025-5718-1995-1270613-2.

Fabiano, N., Mirkov, N. & Radenović, S. 2021. Collatz hypothesis and Planck’s black body radiation. Journal of Siberian Federal University. Mathematics & Physics, 17(3), pp.408-414 [online]. Available at: https://www.mathnet.ru/eng/jsfu/v17/i3/p408 [Accessed: 4 April 2024].

Fabiano, N., Mirkov N., Mitrović, Z.D. & Radenović S. 2023. Chapter 3: Collatz Hypothesis and Kurepa’s Conjecture. In: Advances in Number Theory and Applied Analysis, pp.31-50. Available at: https://doi.org/10.1142/9789811272608_0003.

Guy, R.K. 2004. Unsolved Problems in Number Theory, Third Edition. Springer Science & Business Media. ISBN: 978-0387-20860-2.

Kurtz, S.A. & Simon, J. 2007. The Undecidability of the Generalized Collatz Problem. In: Cai, JY., Cooper, S.B. & Zhu, H. (Eds.) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, 4484. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-540-72504-6_49.

Lagarias, J.C. 1985. The 3x+1 Problem and its Generalizations. The American Mathematical Monthly, 92(1), pp.3-23. Available at: https://doi.org/10.1080/00029890.1985.11971528.

MacTutor. 2024. Collatz conjecture. MacTutor [online]. Available at: https://mathshistory.st-andrews.ac.uk/Biographies/Collatz [Accessed: 4 April 2024].

Roosendaal, E. 2024. On the 3x + 1 problem [online]. Available at: http://www.ericr.nl/wondrous/delrecs.html [Accessed: 4 April 2024].

Weisstein, E.W. 2024. Collatz Problem. MathWorld–A Wolfram Web Resource [online]. Available at: https://mathworld.wolfram.com/CollatzProblem.html [Accessed: 4 April 2024].

Published
2024/09/28
Section
Original Scientific Papers