Ispitivanje uticaja različitih oblika snabdevanja na kvalitet površinskih voda

  • Hocine Chibane Univerzitet u Batni 2, Institut za nauke o Zemlji i svemiru, Departman za geologiju, Laboratorija za mobilizaciju i upravljanje vodnim resursima LMMVR, Batna, Narodna Demokratska Republika Alžir https://orcid.org/0009-0009-8894-3225
  • Mohamed Redha Menani Univerzitet u Batni 2, Institut za nauke o Zemlji i svemiru, Departman za geologiju, Laboratorija za mobilizaciju i upravljanje vodnim resursima LMMVR, Batna, Narodna Demokratska Republika Alžir https://orcid.org/0000-0001-7261-9417
  • Kamel-eddine Bouhidel Univerzitet u Batni 1, Fakultet nauka o materijalima, Departman za hemiju, Laboratorija za hemiju i hemiju životne sredine LCEC, Batna, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-1956-7733
Ključne reči: vodena brana Koudiet Medouar, plavozelene alge, cijanobakterije, zagađenje nutrijentima, Timgad

Sažetak


Uvod/cilj: S rastom populacije i širenjem industrije rezervoari površinskih slatkih voda, kao što su brane, postaju sve značajniji  zbog svoje pristupačnosti i lakoće prerade. Međutim, kvalitet ovih vodoizvorišta postaje sve lošiji, pre svega zbog ispuštanja komunalnih i industrijskih otpadnih voda. Proliferacija ekstenzivnog cvetanja algi dovela je do značajnih problema u održavanju kvaliteta pijaće vode, kao i do zabrinutosti za javno zdravlje. Ova studija bavi se uticajem različitih izvora vode na fizičko-hemijski kvalitet vode u jednoj brani u Alžiru tokom četiri godišnja doba (decembar 2020 – oktobar 2021), a ispituje i faktore koji utiču na pojavu cvetanja cijanobakterija kako bi se bolje razumeo i kontrolisao njihov prekomerni rast.

Metode: Fizičko-hemijska svojstva vode u brani, kao i sastav algi u njoj, analizirani su na mesečnom nivou kako bi se odredili izvori nutrijenata i faktori životne sredine koji utiču na širenje cijanobakterija. 

Rezultati: Analiza je pokazala da su vodotok Timgada i dolina Reboua značajni izvori obogaćivanja hranljivim materijama. Visoke temperature i visoka zasićenost vode hranljivim materijama (naročito ukupnim fosforom) u brani Timgad olakšavaju širenje plavozelenih algi. Pri tome, ograničeni sadržaj azota podstiče dominaciju azotofiksirajućih cijanobakterija  kao što su Aphanizomenon i Oscillatoria. Takođe, u studija se ističe da spori tok Timgada bogatog hranljivim materijama predstavlja pogodnu sredinu za rast cijanobakterija.

Zaključak: Dotok hranljivih materija, temperatura i hidrološki uslovi znatno utiču na cvetanje cijanobakterija. Poznavanje ovih faktora od suštinske je važnosti za primenu efikasnih strategija upravljanja vodom kako bi se smanjila proliferacija algi i zaštitio kvalitet slatkih voda.

Reference

Adimalla, N., Chen, J. & Qian, H. 2020. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, art.number:110406. Available at: https://doi.org/10.1016/j.ecoenv.2020.110406.

-APHA (American Public Health Association). 1992. Standards Methods for the Examination of Water And Wastewater, 18th Edition. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation. ISBN: 0-87553-207-1.

-APHA (American Public Health Association). 1999. Standards Methods for the Examination of Water And Wastewater, 20th Edition. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation. ISBN: 0-87553-235-7.

Amrane, C. & Bouhidel, K.E. 2019. Analysis and speciation of heavy metals in the water, sediments, and drinking water plant sludge of a deep and sulfate-rich Algerian reservoir. Environmental Monitoring and Assessment, 191, art.number:73. Available at: https://doi.org/10.1007/s10661-019-7222-9.

Beaulieu, M., Pick, F. & Gregory-Eaves, I. 2013. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnology and Oceanography, 58(5), pp.1736-1746. Available at: https://doi.org/10.4319/lo.2013.58.5.1736.

Berga, L., Buil, J.M., Bofill, E., De Cea, J.C., Garcia Perez, J.A., Mañueco, G., Polimon, J., Soriano, A. & Yagüe, J. (Eds.). 2006. Dams and Reservoirs, Societies and Environment in the 21st Century, Two Volume Set, 1st ed. In: Proceedings of the International Symposium on Dams in the Societies of the 21st Century, 22nd International Congress on Large Dams (ICOLD), Barcelona, Spain, 18 June. CRC Press. Available at: https://doi.org/10.1201/b16818.

Bouslah, S., Djemili, L. & Houichi, L. 2017. Water quality index assessment of Koudiat Medouar Reservoir, northeast Algeria using weighted arithmetic index method. Journal of Water and Land Development, 35(X-XII), pp.221-228. Available at: https://doi.org/10.1515/jwld-2017-0087.

-British Standards Institute. 2006. BS EN 15204:2006 Water quality. Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermoehl technique). London, UK: British Standards Institute. Available at: https://doi.org/10.3403/30085818.

Carmichael, W. 2008. A world overview — One-hundred-twenty-seven years of research on toxic cyanobacteria — Where do we go from here?. In: Hudnell, H.K. (Eds.) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology, 619. New York, NY: Springer. Available at: https://doi.org/10.1007/978-0-387-75865-7_4.

Cheng, W.P. & Chi, F.-H. 2003. Influence of eutrophication on the coagulation efficiency in reservoir water. Chemosphere, 53(7), pp.773-778. Available at: https://doi.org/10.1016/S0045-6535(03)00510-1.

Codd, G.A., Lindsay, J., Young, F.M., Morrison, L.F. & Metcalf, J.S. 2005. Harmful Cyanobacteria. In: Huisman, J., Matthijs, H.C., Visser, P.M. (Eds.) Harmful Cyanobacteria. Aquatic Ecology Series, 3. Dordrecht: Springer. Available at: https://doi.org/10.1007/1-4020-3022-3_1.

Dobricic, S., Pozzoli, L., Sanseverino, I., Conduto, D. & Lettieri, T. 2016. Algal bloom and its economic impact. Joint Research Centre (European Commission). Available at: https://doi.org/10.2788/660478.

Dzialowski, A.R., Wang, S.-H., Lim, N.-C., Spotts, W.W. & Huggins, D.G. 2005. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research, 27(6), pp.587-595. Available at: https://doi.org/10.1093/plankt/fbi034.

Feihrmann, A.C., Baptista, A.T.A., Lazari, J.P., Silva, M.O., Vieira, M.F. & Vieira, A.M.S. 2017. Evaluation of Coagulation/ Floculation Process for Water Treatment using Defatted Cake from Moringa oleifera. Chemical Engineering Transactions, 57, pp.1543-1548. Available at: https://doi.org/10.3303/CET1757258.

Giannuzzi, L. 2018. Cyanobacteria Growth Kinetics. In. Wong, Y.K. (Ed.) Algae. IntechOpen. Available at: https://doi.org/10.5772/intechopen.81545.

Gitis, V. & Hankins, N. 2018. Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, pp.34-38. Available at: https://doi.org/10.1016/j.jwpe.2018.06.003.

Gleick, P.H. 1993. Water in Crisis: A Guide to the World's Fresh Water Resources. Oxford University Press. ISBN: 9780195076288.

Havens, K.E. 2008. Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell, H.K. (Eds.) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology, 619. New York, NY: Springer. Available at: https://doi.org/10.1007/978-0-387-75865-7_33.

Hoeger, S.J., Hitzfeld, B.C. & Dietrich, D.R. 2005. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicology and Applied Pharmacology, 203(3), pp.231-242. Available at: https://doi.org/10.1016/j.taap.2004.04.015.

Issa, A.A., Abd-Ala, M.H. & Ohyama, T. 2014. Nitrogen Fixing Cyanobacteria: Future Prospect. In: Ohyama, T. (Ed.) Advances in Biology and Ecology of Nitrogen Fixation. IntechOpen. Available at: https://doi.org/10.5772/56995.

Journey, C.A., Beaulieu, K.M. & Bradley, P.M. 2013. Environmental Factors that Influence Cyanobacteria and Geosmin Occurrence in Reservoirs. In: Bradley, P.M. (Ed.) Current Perspectives in Contaminant Hydrology and Water Resources Sustainability. IntechOpen. Available at: https://doi.org/10.5772/54807.

Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T.D. & Skoulikidis, N. 2021. Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere, 263, art.number:128192. Available at: https://doi.org/10.1016/j.chemosphere.2020.128192.

Konopka, A. & Brock, T.D. 1978. Effect of Temperature on Blue-Green Algae (Cyanobacteria) in Lake Mendota. Applied and Environmental Microbiology, 36(4), pp.572-576. Available at: https://doi.org/10.1128/aem.36.4.572-576.1978.

Labed, A. 2015. Biodiversité et dynamique spatio-temporelle de la communauté phytoplanctonique de la zone humide artificielle du barrage. MA thesis. Algeria: University of Oum el Bouaghi [online]. Available at: https://www.ccdz.cerist.dz/admin/notice.php?id=00000000000000816025000632 [Accessed: 15 April 2024].

Li, J., Hansson, L.-A. & Persson, K.M. 2018. Nutrient Control to Prevent the Occurrence of Cyanobacterial Blooms in a Eutrophic Lake in Southern Sweden, Used for Drinking Water Supply. Water, 10(7), art.number:919. Available at: https://doi.org/10.3390/w10070919.

Loucks, D.P. & van Beek, E. 2017. Water Resources Planning and Management: An Overview. In: Water Resource Systems Planning and Management. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-44234-1_1.

Lv, J., Wu, H. & Chen, M. 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41(1), pp.48-56. Available at: https://doi.org/10.1016/j.limno.2010.03.003.

Marra, J., Bidigare, R.R. & Dickey, T.D. 1990. Nutrients and mixing, chlorophyll and phytoplankton growth. Deep Sea Research Part A. Oceanographic Research Papers, 37(1), pp.127-143. Available at: https://doi.org/10.1016/0198-0149(90)90032-Q.

Mhamdi, F., Khouni, I. & Ghrabi, A. 2016. Diagnosis and characteristics of water quality along the Wadi El Bey river (Tunisia). Coagulation/flocculation essays of textile effluents discharged into the Wadi. Desalination and Water Treatment, 57(46), pp.22166-22188. Available at: https://doi.org/10.1080/19443994.2016.1147378.

Mitrovic, S.M., Hardwick, L. & Dorani, F. 2011. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. Journal of Plankton Research, 33(2), pp.229-241. Available at: https://doi.org/10.1093/plankt/fbq094.

O’Neil, J.M., Davis, T.W., Burford, M.A. & Gobler, C.J. 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, pp.313-334. Available at: https://doi.org/10.1016/j.hal.2011.10.027.

Pivokonsky, M., Naceradska, J., Kopecka, I., Baresova, M., Jefferson, B., Li, X. & Henderson, R.K. 2016. The impact of algogenic organic matter on water treatment plant operation and water quality: a review. Critical Reviews in Environmental Science and Technology, 46(4), pp.291-335. Available at: https://doi.org/10.1080/10643389.2015.1087369.

Qu, J. & Fan, M. 2010. The Current State of Water Quality and Technology Development for Water Pollution Control in China. Critical Reviews in Environmental Science and Technology, 40(6), pp.519-560. Available at: https://doi.org/10.1080/10643380802451953.

Quesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C. & Bergamasco, R. 2019. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere, 222, pp.766-780. Available at: https://doi.org/10.1016/j.chemosphere.2019.02.009.

Richardson, S.D. & Postigo, C. 2011. Drinking Water Disinfection By-products. In: Barceló, D. (Ed.) Emerging Organic Contaminants and Human Health. The Handbook of Environmental Chemistry, 20. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/698_2011_125.

Rodier, J., Legube, B., Merlet, N. & Brunet, R. 2009. L'analyse de l'eau - 9e éd. Dunod. ISBN: 9782100541799.

Segerson, K. & Walker, D. 2002. Nutrient pollution: An economic perspective. Estuaries, 25(4), pp.797-808. Available at: https://doi.org/10.1007/BF02804906.

Smatti-Hamza, I., Afri-Mehennaoui, F., Keddari, D. & Mehennaoui, S. 2020. Evaluation du niveau de contamination par le Cuivre et le Chrome des sédiments du barrage Koudiat Medouar de Timgad Batna (Algérie). Algerian Journal of Environmental Science and Technology, 6(2), pp.1348-1353 [online]. Available at: https://www.aljest.net/index.php/aljest/article/view/261. [Accessed: 15 April 2024].

Tiri, A., Lahbari, N. & Boudoukha, A. 2017. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria. Applied Water Science, 7, pp.4197-4206. Available at: https://doi.org/10.1007/s13201-014-0261-z.

-U.S. Environmental Protection Agency. 2001. Method 1687 Total Kjeldahl Nitrogen in Water and Biosolids by Automated Colorimetry with Preliminary Distillation/Digestion. Washington, D.C: U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology Engineering and Analysis Division [online]. Available at: https://www.epa.gov/sites/default/files/2015-10/documents/method_1687_draft_2001.pdf [Accessed: 15 April 2024].

Walker, D.B, Baumgartner, D.J., Gerba, C.P. & Fitzsimmons, K. 2019. Chapter 16 - Surface Water Pollution. In: Environmental and Pollution Science (Third Edition), pp.261-292. Academic Press. Available at: https://doi.org/10.1016/B978-0-12-814719-1.00016-1.

Whitton, B.A. 2012. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Dordrecht. Available at: https://doi.org/10.1007/978-94-007-3855-3.

Wurtsbaugh, W.A., Paerl, H.W. & Dodds, W.K. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water, 6, e1373. Available at: https://doi.org/10.1002/wat2.1373.

Objavljeno
2025/03/28
Rubrika
Originalni naučni radovi