Study of the impact of various supplies on the quality of surface water

  • Hocine Chibane University of Batna 2, Institute of Earth and Universe Sciences, Department of Geology, Mobilization and Management of Water Resources Laboratory LMMWR, Batna, People's Democratic Republic of Algeria https://orcid.org/0009-0009-8894-3225
  • Mohamed Redha Menani University of Batna 2, Institute of Earth and Universe Sciences, Department of Geology, Mobilization and Management of Water Resources Laboratory LMMWR, Batna, People's Democratic Republic of Algeria https://orcid.org/0000-0001-7261-9417
  • Kamel-eddine Bouhidel University of Batna 1, Faculty of Material Sciences, Department of Chemistry, Chemistry and Environmental Chemistry Laboratory LCEC, Batna, People's Democratic Republic of Algeria https://orcid.org/0009-0004-1956-7733
Keywords: Koudiet Medouar water dam, blue-green algae, cyanobacteria, nutrient pollution, Timgad

Abstract


Introduction purpose: As population growth and industrial expansion continue, surface freshwater reservoirs such as dams have become increasingly vital due to their accessibility and ease of treatment. However, the quality of these water sources has significantly deteriorated, primarily due to the discharge of domestic and industrial wastewater. The proliferation of extensive algal blooms has led to significant challenges in maintaining drinking water quality and raised concerns about public health. This study investigates the impact of various water sources on the physicochemical quality of an Algerian dam over four seasons (December 2020 – October 2021) and explores the factors influencing the occurrence of cyanobacterial blooms to better understand and manage this excessive growth.

Methods: Physicochemical properties and algal composition of the dam water were analyzed monthly to determine nutrient sources and environmental factors affecting cyanobacterial proliferation.

Results: The analysis revealed that the Timgad stream and Reboua valley are notable sources of nutrient enrichment. Elevated temperatures and high nutrient loads, particularly total phosphorus (TP), in Timgad dam water facilitate the proliferation of blue-green algae. Additionally, limited nitrogen content favors the dominance of nitrogen-fixing cyanobacteria such as Aphanizomenon and Oscillatoria. The study also highlights that the low flow rate and high nutrient load of the Timgad stream create favorable conditions for cyanobacterial growth.

Conclusions: Nutrient inputs, temperature, and hydrological conditions significantly influence cyanobacterial blooms. Understanding these factors is crucial for implementing effective water management strategies to reduce algal proliferation and protect freshwater quality.

References

Adimalla, N., Chen, J. & Qian, H. 2020. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, art.number:110406. Available at: https://doi.org/10.1016/j.ecoenv.2020.110406.

-APHA (American Public Health Association). 1992. Standards Methods for the Examination of Water And Wastewater, 18th Edition. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation. ISBN: 0-87553-207-1.

-APHA (American Public Health Association). 1999. Standards Methods for the Examination of Water And Wastewater, 20th Edition. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation. ISBN: 0-87553-235-7.

Amrane, C. & Bouhidel, K.E. 2019. Analysis and speciation of heavy metals in the water, sediments, and drinking water plant sludge of a deep and sulfate-rich Algerian reservoir. Environmental Monitoring and Assessment, 191, art.number:73. Available at: https://doi.org/10.1007/s10661-019-7222-9.

Beaulieu, M., Pick, F. & Gregory-Eaves, I. 2013. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnology and Oceanography, 58(5), pp.1736-1746. Available at: https://doi.org/10.4319/lo.2013.58.5.1736.

Berga, L., Buil, J.M., Bofill, E., De Cea, J.C., Garcia Perez, J.A., Mañueco, G., Polimon, J., Soriano, A. & Yagüe, J. (Eds.). 2006. Dams and Reservoirs, Societies and Environment in the 21st Century, Two Volume Set, 1st ed. In: Proceedings of the International Symposium on Dams in the Societies of the 21st Century, 22nd International Congress on Large Dams (ICOLD), Barcelona, Spain, 18 June. CRC Press. Available at: https://doi.org/10.1201/b16818.

Bouslah, S., Djemili, L. & Houichi, L. 2017. Water quality index assessment of Koudiat Medouar Reservoir, northeast Algeria using weighted arithmetic index method. Journal of Water and Land Development, 35(X-XII), pp.221-228. Available at: https://doi.org/10.1515/jwld-2017-0087.

-British Standards Institute. 2006. BS EN 15204:2006 Water quality. Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermoehl technique). London, UK: British Standards Institute. Available at: https://doi.org/10.3403/30085818.

Carmichael, W. 2008. A world overview — One-hundred-twenty-seven years of research on toxic cyanobacteria — Where do we go from here?. In: Hudnell, H.K. (Eds.) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology, 619. New York, NY: Springer. Available at: https://doi.org/10.1007/978-0-387-75865-7_4.

Cheng, W.P. & Chi, F.-H. 2003. Influence of eutrophication on the coagulation efficiency in reservoir water. Chemosphere, 53(7), pp.773-778. Available at: https://doi.org/10.1016/S0045-6535(03)00510-1.

Codd, G.A., Lindsay, J., Young, F.M., Morrison, L.F. & Metcalf, J.S. 2005. Harmful Cyanobacteria. In: Huisman, J., Matthijs, H.C., Visser, P.M. (Eds.) Harmful Cyanobacteria. Aquatic Ecology Series, 3. Dordrecht: Springer. Available at: https://doi.org/10.1007/1-4020-3022-3_1.

Dobricic, S., Pozzoli, L., Sanseverino, I., Conduto, D. & Lettieri, T. 2016. Algal bloom and its economic impact. Joint Research Centre (European Commission). Available at: https://doi.org/10.2788/660478.

Dzialowski, A.R., Wang, S.-H., Lim, N.-C., Spotts, W.W. & Huggins, D.G. 2005. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research, 27(6), pp.587-595. Available at: https://doi.org/10.1093/plankt/fbi034.

Feihrmann, A.C., Baptista, A.T.A., Lazari, J.P., Silva, M.O., Vieira, M.F. & Vieira, A.M.S. 2017. Evaluation of Coagulation/ Floculation Process for Water Treatment using Defatted Cake from Moringa oleifera. Chemical Engineering Transactions, 57, pp.1543-1548. Available at: https://doi.org/10.3303/CET1757258.

Giannuzzi, L. 2018. Cyanobacteria Growth Kinetics. In. Wong, Y.K. (Ed.) Algae. IntechOpen. Available at: https://doi.org/10.5772/intechopen.81545.

Gitis, V. & Hankins, N. 2018. Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, pp.34-38. Available at: https://doi.org/10.1016/j.jwpe.2018.06.003.

Gleick, P.H. 1993. Water in Crisis: A Guide to the World's Fresh Water Resources. Oxford University Press. ISBN: 9780195076288.

Havens, K.E. 2008. Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell, H.K. (Eds.) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology, 619. New York, NY: Springer. Available at: https://doi.org/10.1007/978-0-387-75865-7_33.

Hoeger, S.J., Hitzfeld, B.C. & Dietrich, D.R. 2005. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicology and Applied Pharmacology, 203(3), pp.231-242. Available at: https://doi.org/10.1016/j.taap.2004.04.015.

Issa, A.A., Abd-Ala, M.H. & Ohyama, T. 2014. Nitrogen Fixing Cyanobacteria: Future Prospect. In: Ohyama, T. (Ed.) Advances in Biology and Ecology of Nitrogen Fixation. IntechOpen. Available at: https://doi.org/10.5772/56995.

Journey, C.A., Beaulieu, K.M. & Bradley, P.M. 2013. Environmental Factors that Influence Cyanobacteria and Geosmin Occurrence in Reservoirs. In: Bradley, P.M. (Ed.) Current Perspectives in Contaminant Hydrology and Water Resources Sustainability. IntechOpen. Available at: https://doi.org/10.5772/54807.

Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T.D. & Skoulikidis, N. 2021. Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere, 263, art.number:128192. Available at: https://doi.org/10.1016/j.chemosphere.2020.128192.

Konopka, A. & Brock, T.D. 1978. Effect of Temperature on Blue-Green Algae (Cyanobacteria) in Lake Mendota. Applied and Environmental Microbiology, 36(4), pp.572-576. Available at: https://doi.org/10.1128/aem.36.4.572-576.1978.

Labed, A. 2015. Biodiversité et dynamique spatio-temporelle de la communauté phytoplanctonique de la zone humide artificielle du barrage. MA thesis. Algeria: University of Oum el Bouaghi [online]. Available at: https://www.ccdz.cerist.dz/admin/notice.php?id=00000000000000816025000632 [Accessed: 15 April 2024].

Li, J., Hansson, L.-A. & Persson, K.M. 2018. Nutrient Control to Prevent the Occurrence of Cyanobacterial Blooms in a Eutrophic Lake in Southern Sweden, Used for Drinking Water Supply. Water, 10(7), art.number:919. Available at: https://doi.org/10.3390/w10070919.

Loucks, D.P. & van Beek, E. 2017. Water Resources Planning and Management: An Overview. In: Water Resource Systems Planning and Management. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-44234-1_1.

Lv, J., Wu, H. & Chen, M. 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41(1), pp.48-56. Available at: https://doi.org/10.1016/j.limno.2010.03.003.

Marra, J., Bidigare, R.R. & Dickey, T.D. 1990. Nutrients and mixing, chlorophyll and phytoplankton growth. Deep Sea Research Part A. Oceanographic Research Papers, 37(1), pp.127-143. Available at: https://doi.org/10.1016/0198-0149(90)90032-Q.

Mhamdi, F., Khouni, I. & Ghrabi, A. 2016. Diagnosis and characteristics of water quality along the Wadi El Bey river (Tunisia). Coagulation/flocculation essays of textile effluents discharged into the Wadi. Desalination and Water Treatment, 57(46), pp.22166-22188. Available at: https://doi.org/10.1080/19443994.2016.1147378.

Mitrovic, S.M., Hardwick, L. & Dorani, F. 2011. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. Journal of Plankton Research, 33(2), pp.229-241. Available at: https://doi.org/10.1093/plankt/fbq094.

O’Neil, J.M., Davis, T.W., Burford, M.A. & Gobler, C.J. 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, pp.313-334. Available at: https://doi.org/10.1016/j.hal.2011.10.027.

Pivokonsky, M., Naceradska, J., Kopecka, I., Baresova, M., Jefferson, B., Li, X. & Henderson, R.K. 2016. The impact of algogenic organic matter on water treatment plant operation and water quality: a review. Critical Reviews in Environmental Science and Technology, 46(4), pp.291-335. Available at: https://doi.org/10.1080/10643389.2015.1087369.

Qu, J. & Fan, M. 2010. The Current State of Water Quality and Technology Development for Water Pollution Control in China. Critical Reviews in Environmental Science and Technology, 40(6), pp.519-560. Available at: https://doi.org/10.1080/10643380802451953.

Quesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C. & Bergamasco, R. 2019. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere, 222, pp.766-780. Available at: https://doi.org/10.1016/j.chemosphere.2019.02.009.

Richardson, S.D. & Postigo, C. 2011. Drinking Water Disinfection By-products. In: Barceló, D. (Ed.) Emerging Organic Contaminants and Human Health. The Handbook of Environmental Chemistry, 20. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/698_2011_125.

Rodier, J., Legube, B., Merlet, N. & Brunet, R. 2009. L'analyse de l'eau - 9e éd. Dunod. ISBN: 9782100541799.

Segerson, K. & Walker, D. 2002. Nutrient pollution: An economic perspective. Estuaries, 25(4), pp.797-808. Available at: https://doi.org/10.1007/BF02804906.

Smatti-Hamza, I., Afri-Mehennaoui, F., Keddari, D. & Mehennaoui, S. 2020. Evaluation du niveau de contamination par le Cuivre et le Chrome des sédiments du barrage Koudiat Medouar de Timgad Batna (Algérie). Algerian Journal of Environmental Science and Technology, 6(2), pp.1348-1353 [online]. Available at: https://www.aljest.net/index.php/aljest/article/view/261. [Accessed: 15 April 2024].

Tiri, A., Lahbari, N. & Boudoukha, A. 2017. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria. Applied Water Science, 7, pp.4197-4206. Available at: https://doi.org/10.1007/s13201-014-0261-z.

-U.S. Environmental Protection Agency. 2001. Method 1687 Total Kjeldahl Nitrogen in Water and Biosolids by Automated Colorimetry with Preliminary Distillation/Digestion. Washington, D.C: U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology Engineering and Analysis Division [online]. Available at: https://www.epa.gov/sites/default/files/2015-10/documents/method_1687_draft_2001.pdf [Accessed: 15 April 2024].

Walker, D.B, Baumgartner, D.J., Gerba, C.P. & Fitzsimmons, K. 2019. Chapter 16 - Surface Water Pollution. In: Environmental and Pollution Science (Third Edition), pp.261-292. Academic Press. Available at: https://doi.org/10.1016/B978-0-12-814719-1.00016-1.

Whitton, B.A. 2012. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Dordrecht. Available at: https://doi.org/10.1007/978-94-007-3855-3.

Wurtsbaugh, W.A., Paerl, H.W. & Dodds, W.K. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water, 6, e1373. Available at: https://doi.org/10.1002/wat2.1373.

Published
2025/03/28
Section
Original Scientific Papers