Ispitivanje nulte unakrsne korelacije fleksibilne promenljive težine (FVWZCC) za primenu u različitim medijima
Sažetak
Uvod/cilj: U radu se predlaže nova metoda za konstruisanje koda sa svojstvom nulte unakrsne korelacije (Flexible Variable Weight Zero Cross-Correlation – FVWZCC). Metoda je jednostavna, fleksibilna i koristi različite težine koda da podrži različite klase korisnika zavisno od njihove daljine prenosa i kvaliteta usluga koje su im potrebne (podaci, audio ili video) u sistemima OCDMA. Korišćenjem težina višeg koda omogućava se podrška mrežnim aplikacijama višeg prioriteta kao što su mreže velikog dometa. Struktura koda ZCC se ne preklapa sa bitom ‘1’ i može efikasno da eliminiše interferenciju MAI među korisnicima, kao i PIIN šum, povećavajući tako ukupne performanse sistema.
Metode:Za konstrukciju predloženog koda FVWZCC korišćeni su pozicija elementa pomeranja i proces konkatenacije matrice tri osnovne matrice označen kao desni vektor, osnovna matrica, kao i levi vektor. Matematička analiza i simulacije pomoću softverskih programa Matlab i OptiSystem korišćene su za evaluaciju performanse predložene metode FVWZCC u sistemima SAC-OCDMA direktnom detekcijom.
Rezultati: Rezultati pokazuju značajan napredak u predstavljenom kodu u poređenju sa ostalim postojećim kodovima, što se ogleda u jednostavnosti, fleksibilnosti i ceni implementacije. Metoda koristi ili konstantnu ili promenljivu težinu sa svojstvom nulte unakrsne korelacije. Za maksimalno prihvatljiv BER od 10-9, rezultati simulacije sistema SAC-OCDMA korišćenjem direktne detekcije u softveru OptiSystem pokazuju bolje performanse od predloženog koda sa četiri korisnika težine 6 pri 10 Gb/s. Štaviše, može da podržava do 60 korisnika istovremeno i da dostigne dužinu vlakna od oko 67 km. Zato predloženi kod FVWZCC može da podržava zahteve za različit kvalitet usluge (QoS), uz nisku cenu i jednostavnu primenu sa prijemnikom direktne detekcije.
Zaključak: Nalazi ove studije naglašavaju potrebu za kodom FVWZCC radi podrške zahtevima QoS krajnjih korisnika. Novi pristup konstrukciji koda obezbeđuje nisku cenu implementacije, jednostavnost i fleksibilnost.
Reference
Abd, T.H., Aljunid, S.A. & Fadhil, H.A. 2011. A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems. Journal of Optical Communications, 32(4), pp.263-267. Available at: https://doi.org/10.1515/joc.2011.054.
Ahmed, N., Aljunid, S.A., Ahmad, R.B., Fadil, H.A. & Rashid, M.A. 2012. Novel OCDMA Detection Technique based on Modified Double Weight Code for Optical Access Network. Elektronika Ir Elektrotechnika, 18(8), pp.117-121. Available at: https://doi.org/10.5755/j01.eee.18.8.2638.
Ahmed, H.Y. & Nisar, K.S. 2013. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access. Optical Fiber Technology, 19(4), pp.335-347. Available at: https://doi.org/10.1016/j.yofte.2013.04.001.
Ahmed, H.Y., Zeghid, M., Imtiaz, W.A. & Sghaier, A. 2019. Two dimensional Fixed Right Shift (FRS) code for SAC-OCDMA systems. Optical Fiber Technology, 47, pp.73-87. Available at: https://doi.org/10.1016/j.yofte.2018.11.021.
Ahmed, H.Y., Zeghid, M., Sharma, T., Imtiaz, W.A. & El-Mottaleb, S.A.A. 2022. An efficient algorithm to provide triple play services in passive optical network (PON)-OCDMA network. Optical and Quantum Electronics, 54, art.number:351. Available at: https://doi.org/10.1007/s11082-022-03714-8.
Anas, S.B.A., Abdullah, M. K., Mokhtar, M., Aljunid, S. A. & Walker, S. D. 2009. Optical domain service differentiation using spectral amplitude-coding. Optical Fiber Technology, 15(1), pp.26-32. Available at: https://doi.org/10.1016/j.yofte.2008.04.001.
Anuar, M.S., Aljunid, S.A., Saad, N.M. & Hamzah, S.M. 2009. New design of spectral amplitude coding in OCDMA with zero cross-correlation. Optics communications, 282(14), pp.2659-2664. Available at: https://doi.org/10.1016/j.optcom.2009.03.079.
Bensaad, A., Bensaad, Z., Garadi, A. & Beloufa, A. 2019. An efficient zero cross-correlation codes for OCDMA networks. In: 2019: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, pp.1-4, November 19-21. Available at: https://doi.org/10.1109/icaee47123.2019.9014798.
Bensaad, A., Garadi, A., Beloufa, A. & Bensaad, Z. 2023. New Zero Cross-Correlation Codes Based on Zech Method’s for OCDMA Systems. Gazi University Journal of Science, 36(1), pp.238-247. Available at: https://doi.org/10.35378/gujs.994461.
Dat, P.T., Kanno, A., Yamamoto, N. & Kawanishi, T. 2018. Seamless convergence of fiber and wireless systems for 5G and beyond networks. Journal of Lightwave Technology, 37(2), pp.592-605. Available at: https://doi.org/10.1109/jlt.2018.2883337.
Dixit, A., Lannoo, B., Das, G., Colle, D., Pickavet, M. & Demeester, P. 2013. Flexible TDMA/WDMA passive optical network: Energy efficient next-generation optical access solution. Optical Switching and Networking, 10(4), pp.491-506. Available at: https://doi.org/10.1016/j.osn.2013.03.001.
El-Mottaleb, S.A.A., Fayed, H.A., Ismail, N.E., Aly, M.H. & Rizk, M.R.M. 2020. MDW and EDW/DDW codes with AND subtraction/single photodiode detection for high performance hybrid SAC-OCDMA/OFDM system. Optical and Quantum Electronics, 52, art.number:239. Available at: https://doi.org/10.1007/s11082-020-02357-x.
Fadhil, H.A., Aljunid, S.A. & Ahmad, R.B. 2009a. Performance of random diagonal code for OCDMA systems using new spectral direct detection technique. Optical Fiber Technology, 15(3), pp.283-289. Available at: https://doi.org/10.1016/j.yofte.2008.12.005.
Fadhil, H.A., Aljunid, S.A. & Badlisha, R. 2009b. Triple-play Services using Random Diagonal Code for Spectral Amplitude Coding OCDMA Systems. Journal of Optical Communications, 30(3), pp.155-159. Available at: https://doi.org/10.1515/joc.2009.30.3.155.
Farghal, A.E.A. 2016. Performance Analysis of Core-Multiplexed Spectral Amplitude Coded OCDMA PON. Journal of Optical Communications and Networking, 8(9), pp.666-675. Available at: https://doi.org/10.1364%2Fjocn.8.000666.
Feng, G., Cheng, W.-Q. & Chen, F.-J. 2015. Design of variable-weight quadratic congruence code for optical CDMA. Infrared Physics & Technology, 72, pp.281-285. Available at: https://doi.org/10.1016/j.infrared.2015.08.008.
Hakeem, S.A.A., Hussein, H.H. & Kim, H. 2022. Vision and research directions of 6G technologies and applications. Journal of King Saud University-Computer and Information Sciences, 34(6), Part A, pp.2419-2442. Available at: https://doi.org/10.1016/j.jksuci.2022.03.019.
Huang, J.-F., Yen, C.-T. & Li, T.-Y. 2008. Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions. Optical Fiber Technology, 14(3), pp.247-258. Available at: https://doi.org/10.1016/j.yofte.2007.12.007.
Imtiaz, W.A., Ahmed, H.Y., Zeghid, M. & Sharief, Y. 2020. Two-dimensional optimized enhanced multi-diagonal code for OCDMA passive optical networks. Optical and Quantum Electronics, 52, art.number:33. Available at: https://doi.org/10.1007/s11082-019-2145-9.
Imtiaz, W.A., Ilyas, M. & Khan, Y. 2016. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi-diagonal code. Infrared Physics & Technology, 79, pp.36-44. Available at: https://doi.org/10.1016/j.infrared.2016.09.006.
Ji, W. & Chang, J. 2013. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing. Optics & Laser Technology, 49, pp.301-306. Available at: https://doi.org/10.1016/j.osn.2019.100551.
Kaur, S. & Singh, S. 2018. Review on developments in all-optical spectral amplitude coding techniques. Optical engineering, 57(11), art.number:116102. Available at: https://doi.org/10.1117/1.oe.57.11.116102.
Kbashi, H.J., Sharma, V. & Sergeyev, S. 2021. Dual-wavelength fiber-laser-based transmission of millimeter waves for 5G-supported Radio-over-Fiber (RoF) links. Optical Fiber Technology, 65, art.number:102588. Available at: https://doi.org/10.1016/j.yofte.2021.102588.
Kumawat, S. & Maddila, R.K. 2017. Development of ZCCC for multimedia service using SAC-OCDMA systems. Optical Fiber Technology, 39, pp.12-20. Available at: https://doi.org/10.1016/j.yofte.2017.09.015.
Kumawat, S. & Ravi Kumar, M. 2018. Design of variable weight code for multimedia service in SAC--OCDMA systems. IET Optoelectronics, 12(2), pp.56-64. Available at: https://doi.org/10.1049/iet-opt.2017.0046.
Li, X., Ding, Q.A., Nie, B., Liu, C., Wang, X., Song, J. & Zhang, L. 2023. Development and performance improvement of a novel zero cross-correlation code for SAC-OCDMA systems. Journal of Optical Communications, 44(s1), pp.s1327-s1339. Available at: https://doi.org/10.1515/joc-2020-0086.
Lu, Z., Lu, Y. & Li, C. 2021. Design of zero cross-correlation variable weight codes for multimedia services based on magic square in SAC-OCDMA systems. Optoelectronics Letters, 17(9), pp.539-545. Available at: https://doi.org/10.1007/s11801-021-0198-z.
Mostafa, S., Mohamed, A.E.-N.A., El-Samie, F.E.A. & Rashed, A.N Z. 2015. Eradication of Multiple Access Interference Using a Modified Multi-service Code for SAC–OCDMA. Wireless Personal Communications, 83, pp.855-872. Available at: https://doi.org/10.1007/s11277-015-2430-2.
Nasaruddin, N. & Tsujioka, T. 2008. Design of strict variable-weight optical orthogonal codes for differentiated quality of service in optical CDMA networks. Computer Networks, 52(10), pp.2077-2086. Available at: https://doi.org/10.1016/j.comnet.2008.02.014.
Nisar, K.S., Ahmed, H.Y., Zeghid, M., Imtiaz, W.A., Sarangal, H. & Thapar, S.S. 2021. The multi-service schemes for SAC-OCDMA systems with variable code weight. Optical and Quantum Electronics, 53, art.number:293. Available at: https://doi.org/10.1007/s11082-021-02932-w.
Nisar, K.S., Sarangal, H. & Thapar, S.S. 2019. Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection technique. Photonic Network Communications, 37(1), pp.75-82. Available at: https://doi.org/10.1007/s11107-018-0794-4.
Osadola, T.B., Idris, S.K., Glesk, I. & Kwong, W.C. 2011. Network Scaling Using OCDMA Over OTDM. IEEE Photonics Technology Letters, 24(5), pp.395-397. Available at: https://doi.org/10.1109/lpt.2011.2179924.
Pendeza Martinez, C.A., Abrao, T. & Martinez, A.L.M. 2021. Energy and spectral efficiency trade-off in OCDMA-PON assisted by non-linear programming methods. Computer Networks, 189, art.number:107920. Available at: https://doi.org/10.1016/j.comnet.2021.107920.
Rahimian, F.P., Seyedzadeh, S. & Glesk, I. 2019. OCDMA-based sensor network for monitoring construction sites affected by vibrations. Journal of Information Technology in Construction, 24, pp.299-317 [online]. Available at: http://www.itcon.org/2019/16 [Accessed: 15 April 2024].
Rashidi, C.B.M., Aljunid, S.A., Ghani, F., Fadhil, H.A., Anuar, M.S. & Arief, A.R. 2014. Cardinality enrichment of flexible cross correlation (FCC) code for SAC-OCDMA system by alleviation interference scheme (AIS). Optik, 125(17), pp.4889-4894. Available at: https://doi.org/10.1016/j.ijleo.2014.04.035.
Shi, F. & Ghafouri-Shiraz, H. 2016. Performance Analysis of Two New Code Families for Spectral-Amplitude-Coding Optical CDMA Systems. Journal of Lightwave Technology, 34(17), pp.4005-4014. Available at: https://doi.org/10.1109/JLT.2016.2586527.
Teli, S.R., Zvanovec, S. & Ghassemlooy, Z. 2018. Optical internet of things within 5G: Applications and challenges. In: 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, pp.40-45, November 01-03. Available at: https://doi.org/10.1109/iotais.2018.8600894.
Troia, S., Cibari, A., Alvizu, R. & Maier, G. 2020. Dynamic programming of network slices in software-defined metro-core optical networks. Optical Switching and Networking, 36, art.number:100551. Available at: https://doi.org/10.1016/j.osn.2019.100551.
Upadhyay, K.K., Shukla, N.K. & Chaudhary, S. 2020. A high speed 100 Gbps MDM-SAC-OCDMA multimode transmission system for short haul communication. Optik, 202, art.number:163665. Available at: https://doi.org/10.1016/j.ijleo.2019.163665.
Wei, Z., Ghafouri-Shiraz, H. & Shalaby, H.M.H. 2001. Performance analysis of optical spectral-amplitude-coding CDMA systems using a super-fluorescent fiber source. IEEE Photonics Technology Letters, 13(8), pp.88-889. Available at: https://doi.org/10.1109/68.935837.
Wei, Z. & Ghafouri-Shiraz, H. 2002. Codes for spectral-amplitude-coding optical CDMA systems. Journal of Lightwave Technology, 20(8), pp. 1284-1291. Available at: https://doi.org/10.1109/jlt.2002.800301.
Zhang, Y., Gan, C., Gou, K. & Hua, J. 2017. GPON-and-EPON transmission based on multi-standard OLT management structure for VPON in metro-access optical network. Optical Switching and Networking, 25, pp.24-32. Available at: https://doi.org/10.1016/j.osn.2017.01.001.
Sva prava zadržana (c) 2024 Abdellah Bensaad, Abbes Beloufa, Ahmed Garadi
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).