Flexible Variable Weight Zero Cross-Correlation (FVWZCC) investigations for multimedia applications

Keywords: FVWZCC code, OCDMA, ZCC, Bit Error Rate BER

Abstract


Introduction/purpose: In this paper, we propose a novel code construction method with the zero cross-correlation property, the Flexible Variable Weight Zero Cross-Correlation (FVWZCC). This method is simple and flexible, using different code weights to support different classes of users according to their transmission distance and the quality of services they require (data, audio, and video) in OCDMA systems. The use of higher code weights enables the support of higher-priority application networks, such as long-haul reach networks. The ZCC code structure does not have overlapping of bit ‘1’ and can efficiently eliminates the MAI interference between users and PIIN noise, thus enhancing the system overall performance.

Methods: The shifting element position and the concatenation matrix process of the three basic matrices denoted as the Right vector, the basic matrix, and the Left vector were used for the construction of the proposed FVWZCC code. The mathematical analysis and simulations with Matlab and Optisystem software were used to evaluate the performance of the proposed FVWZCC method in SAC-OCDMA systems using the direct detection.

Results: The results show a significant improvement in the presented code compared to other existing codes in terms of simplicity, flexibility, and cost implementation. The method uses either constant or variable weight with the Zero cross-correlation property. For a maximum acceptable BER of 10-9 , the simulation results of the SAC-OCDMA system using direct detection under OptiSystem software show better performance of the proposed code with four users of weight 6 at 10 Gb/s. Moreover, it can support up to 60 users simultaneously and reach a fibre distance of about 67 km. Consequently, the proposed FVWZCC code can be applied to support different Quality of Service (QOS) requirements with low cost and low complexity with a direct detection receiver.  

Conclusion: The findings of this study highlight the need for the FVWZCC code to support end-user QoS requirements. The new approach to code construction offers low-cost implementation, simplicity, and flexibility. 

 

References

Abd, T.H., Aljunid, S.A. & Fadhil, H.A. 2011. A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems. Journal of Optical Communications, 32(4), pp.263-267. Available at: https://doi.org/10.1515/joc.2011.054.

Ahmed, N., Aljunid, S.A., Ahmad, R.B., Fadil, H.A. & Rashid, M.A. 2012. Novel OCDMA Detection Technique based on Modified Double Weight Code for Optical Access Network. Elektronika Ir Elektrotechnika, 18(8), pp.117-121. Available at: https://doi.org/10.5755/j01.eee.18.8.2638.

Ahmed, H.Y. & Nisar, K.S. 2013. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access. Optical Fiber Technology, 19(4), pp.335-347. Available at: https://doi.org/10.1016/j.yofte.2013.04.001.

Ahmed, H.Y., Zeghid, M., Imtiaz, W.A. & Sghaier, A. 2019. Two dimensional Fixed Right Shift (FRS) code for SAC-OCDMA systems. Optical Fiber Technology, 47, pp.73-87. Available at: https://doi.org/10.1016/j.yofte.2018.11.021.

Ahmed, H.Y., Zeghid, M., Sharma, T., Imtiaz, W.A. & El-Mottaleb, S.A.A. 2022. An efficient algorithm to provide triple play services in passive optical network (PON)-OCDMA network. Optical and Quantum Electronics, 54, art.number:351. Available at: https://doi.org/10.1007/s11082-022-03714-8.

Anas, S.B.A., Abdullah, M. K., Mokhtar, M., Aljunid, S. A. & Walker, S. D. 2009. Optical domain service differentiation using spectral amplitude-coding. Optical Fiber Technology, 15(1), pp.26-32. Available at: https://doi.org/10.1016/j.yofte.2008.04.001.

Anuar, M.S., Aljunid, S.A., Saad, N.M. & Hamzah, S.M. 2009. New design of spectral amplitude coding in OCDMA with zero cross-correlation. Optics communications, 282(14), pp.2659-2664. Available at: https://doi.org/10.1016/j.optcom.2009.03.079.

Bensaad, A., Bensaad, Z., Garadi, A. & Beloufa, A. 2019. An efficient zero cross-correlation codes for OCDMA networks. In: 2019: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, pp.1-4, November 19-21. Available at: https://doi.org/10.1109/icaee47123.2019.9014798.

Bensaad, A., Garadi, A., Beloufa, A. & Bensaad, Z. 2023. New Zero Cross-Correlation Codes Based on Zech Method’s for OCDMA Systems. Gazi University Journal of Science, 36(1), pp.238-247. Available at: https://doi.org/10.35378/gujs.994461.

Dat, P.T., Kanno, A., Yamamoto, N. & Kawanishi, T. 2018. Seamless convergence of fiber and wireless systems for 5G and beyond networks. Journal of Lightwave Technology, 37(2), pp.592-605. Available at: https://doi.org/10.1109/jlt.2018.2883337.

Dixit, A., Lannoo, B., Das, G., Colle, D., Pickavet, M. & Demeester, P. 2013. Flexible TDMA/WDMA passive optical network: Energy efficient next-generation optical access solution. Optical Switching and Networking, 10(4), pp.491-506. Available at: https://doi.org/10.1016/j.osn.2013.03.001.

El-Mottaleb, S.A.A., Fayed, H.A., Ismail, N.E., Aly, M.H. & Rizk, M.R.M. 2020. MDW and EDW/DDW codes with AND subtraction/single photodiode detection for high performance hybrid SAC-OCDMA/OFDM system. Optical and Quantum Electronics, 52, art.number:239. Available at: https://doi.org/10.1007/s11082-020-02357-x.

Fadhil, H.A., Aljunid, S.A. & Ahmad, R.B. 2009a. Performance of random diagonal code for OCDMA systems using new spectral direct detection technique. Optical Fiber Technology, 15(3), pp.283-289. Available at: https://doi.org/10.1016/j.yofte.2008.12.005.

Fadhil, H.A., Aljunid, S.A. & Badlisha, R. 2009b. Triple-play Services using Random Diagonal Code for Spectral Amplitude Coding OCDMA Systems. Journal of Optical Communications, 30(3), pp.155-159. Available at: https://doi.org/10.1515/joc.2009.30.3.155.

Farghal, A.E.A. 2016. Performance Analysis of Core-Multiplexed Spectral Amplitude Coded OCDMA PON. Journal of Optical Communications and Networking, 8(9), pp.666-675. Available at: https://doi.org/10.1364%2Fjocn.8.000666.

Feng, G., Cheng, W.-Q. & Chen, F.-J. 2015. Design of variable-weight quadratic congruence code for optical CDMA. Infrared Physics & Technology, 72, pp.281-285. Available at: https://doi.org/10.1016/j.infrared.2015.08.008.

Hakeem, S.A.A., Hussein, H.H. & Kim, H. 2022. Vision and research directions of 6G technologies and applications. Journal of King Saud University-Computer and Information Sciences, 34(6), Part A, pp.2419-2442. Available at: https://doi.org/10.1016/j.jksuci.2022.03.019.

Huang, J.-F., Yen, C.-T. & Li, T.-Y. 2008. Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions. Optical Fiber Technology, 14(3), pp.247-258. Available at: https://doi.org/10.1016/j.yofte.2007.12.007.

Imtiaz, W.A., Ahmed, H.Y., Zeghid, M. & Sharief, Y. 2020. Two-dimensional optimized enhanced multi-diagonal code for OCDMA passive optical networks. Optical and Quantum Electronics, 52, art.number:33. Available at: https://doi.org/10.1007/s11082-019-2145-9.

Imtiaz, W.A., Ilyas, M. & Khan, Y. 2016. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi-diagonal code. Infrared Physics & Technology, 79, pp.36-44. Available at: https://doi.org/10.1016/j.infrared.2016.09.006.

Ji, W. & Chang, J. 2013. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing. Optics & Laser Technology, 49, pp.301-306. Available at: https://doi.org/10.1016/j.osn.2019.100551.

Kaur, S. & Singh, S. 2018. Review on developments in all-optical spectral amplitude coding techniques. Optical engineering, 57(11), art.number:116102. Available at: https://doi.org/10.1117/1.oe.57.11.116102.

Kbashi, H.J., Sharma, V. & Sergeyev, S. 2021. Dual-wavelength fiber-laser-based transmission of millimeter waves for 5G-supported Radio-over-Fiber (RoF) links. Optical Fiber Technology, 65, art.number:102588. Available at: https://doi.org/10.1016/j.yofte.2021.102588.

Kumawat, S. & Maddila, R.K. 2017. Development of ZCCC for multimedia service using SAC-OCDMA systems. Optical Fiber Technology, 39, pp.12-20. Available at: https://doi.org/10.1016/j.yofte.2017.09.015.

Kumawat, S. & Ravi Kumar, M. 2018. Design of variable weight code for multimedia service in SAC--OCDMA systems. IET Optoelectronics, 12(2), pp.56-64. Available at: https://doi.org/10.1049/iet-opt.2017.0046.

Li, X., Ding, Q.A., Nie, B., Liu, C., Wang, X., Song, J. & Zhang, L. 2023. Development and performance improvement of a novel zero cross-correlation code for SAC-OCDMA systems. Journal of Optical Communications, 44(s1), pp.s1327-s1339. Available at: https://doi.org/10.1515/joc-2020-0086.

Lu, Z., Lu, Y. & Li, C. 2021. Design of zero cross-correlation variable weight codes for multimedia services based on magic square in SAC-OCDMA systems. Optoelectronics Letters, 17(9), pp.539-545. Available at: https://doi.org/10.1007/s11801-021-0198-z.

Mostafa, S., Mohamed, A.E.-N.A., El-Samie, F.E.A. & Rashed, A.N Z. 2015. Eradication of Multiple Access Interference Using a Modified Multi-service Code for SAC–OCDMA. Wireless Personal Communications, 83, pp.855-872. Available at: https://doi.org/10.1007/s11277-015-2430-2.

Nasaruddin, N. & Tsujioka, T. 2008. Design of strict variable-weight optical orthogonal codes for differentiated quality of service in optical CDMA networks. Computer Networks, 52(10), pp.2077-2086. Available at: https://doi.org/10.1016/j.comnet.2008.02.014.

Nisar, K.S., Ahmed, H.Y., Zeghid, M., Imtiaz, W.A., Sarangal, H. & Thapar, S.S. 2021. The multi-service schemes for SAC-OCDMA systems with variable code weight. Optical and Quantum Electronics, 53, art.number:293. Available at: https://doi.org/10.1007/s11082-021-02932-w.

Nisar, K.S., Sarangal, H. & Thapar, S.S. 2019. Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection technique. Photonic Network Communications, 37(1), pp.75-82. Available at: https://doi.org/10.1007/s11107-018-0794-4.

Osadola, T.B., Idris, S.K., Glesk, I. & Kwong, W.C. 2011. Network Scaling Using OCDMA Over OTDM. IEEE Photonics Technology Letters, 24(5), pp.395-397. Available at: https://doi.org/10.1109/lpt.2011.2179924.

Pendeza Martinez, C.A., Abrao, T. & Martinez, A.L.M. 2021. Energy and spectral efficiency trade-off in OCDMA-PON assisted by non-linear programming methods. Computer Networks, 189, art.number:107920. Available at: https://doi.org/10.1016/j.comnet.2021.107920.

Rahimian, F.P., Seyedzadeh, S. & Glesk, I. 2019. OCDMA-based sensor network for monitoring construction sites affected by vibrations. Journal of Information Technology in Construction, 24, pp.299-317 [online]. Available at: http://www.itcon.org/2019/16 [Accessed: 15 April 2024].

Rashidi, C.B.M., Aljunid, S.A., Ghani, F., Fadhil, H.A., Anuar, M.S. & Arief, A.R. 2014. Cardinality enrichment of flexible cross correlation (FCC) code for SAC-OCDMA system by alleviation interference scheme (AIS). Optik, 125(17), pp.4889-4894. Available at: https://doi.org/10.1016/j.ijleo.2014.04.035.

Shi, F. & Ghafouri-Shiraz, H. 2016. Performance Analysis of Two New Code Families for Spectral-Amplitude-Coding Optical CDMA Systems. Journal of Lightwave Technology, 34(17), pp.4005-4014. Available at: https://doi.org/10.1109/JLT.2016.2586527.

Teli, S.R., Zvanovec, S. & Ghassemlooy, Z. 2018. Optical internet of things within 5G: Applications and challenges. In: 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, pp.40-45, November 01-03. Available at: https://doi.org/10.1109/iotais.2018.8600894.

Troia, S., Cibari, A., Alvizu, R. & Maier, G. 2020. Dynamic programming of network slices in software-defined metro-core optical networks. Optical Switching and Networking, 36, art.number:100551. Available at: https://doi.org/10.1016/j.osn.2019.100551.

Upadhyay, K.K., Shukla, N.K. & Chaudhary, S. 2020. A high speed 100 Gbps MDM-SAC-OCDMA multimode transmission system for short haul communication. Optik, 202, art.number:163665. Available at: https://doi.org/10.1016/j.ijleo.2019.163665.

Wei, Z., Ghafouri-Shiraz, H. & Shalaby, H.M.H. 2001. Performance analysis of optical spectral-amplitude-coding CDMA systems using a super-fluorescent fiber source. IEEE Photonics Technology Letters, 13(8), pp.88-889. Available at: https://doi.org/10.1109/68.935837.

Wei, Z. & Ghafouri-Shiraz, H. 2002. Codes for spectral-amplitude-coding optical CDMA systems. Journal of Lightwave Technology, 20(8), pp. 1284-1291. Available at: https://doi.org/10.1109/jlt.2002.800301.

Zhang, Y., Gan, C., Gou, K. & Hua, J. 2017. GPON-and-EPON transmission based on multi-standard OLT management structure for VPON in metro-access optical network. Optical Switching and Networking, 25, pp.24-32. Available at: https://doi.org/10.1016/j.osn.2017.01.001.

Published
2024/11/17
Section
Original Scientific Papers