Procenjivanje ponašanja strukture zidova od cigli od reciklirane plastike pod monotonim i cikličnim opterećenjem

  • Youcef Moulai Arbi Univerzitet „Mustafa Stambouli”, Laboratorija za kvantnu fiziku materije i matematičko modeliranje (LPQ3M), Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-6534-8820
  • Noureddine Mahmoudi Univerzitet u Saidi „Dr Mulai Tahar”, Tehnološki fakultet, Departman za građevinarstvo i hidrauliku, Saida, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-9740-0857
  • Mohammed Bentahar Univerzitet u Saidi „Dr Mulai Tahar”, Tehnološki fakultet, Departman za građevinarstvo i hidrauliku, Saida, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-2166-678X
Ključne reči: analiza konačnih elemenata, cigle od plastike, zidani zid, opterećenja u ravni, ciklična opterećenja u ravni

Sažetak


Uvod/cilj: U radu se analiziraju performanse strukture zidanog zida od recikliranih plastičnih cigala pod monotonim i cikličnim opterećenjem. Cilj je bio da se ispita mogućnost korišćenja cigli od reciklirane plastike kao zamena za zidanu konstrukciju, s fokusom na održivost strukture i potencijalnu korist za životnu sredinu. 

Metode:Za simulaciju ponašanja ovakvih zidova korišćen je pojednostavljeni pristup mikromodelovanja u Abakusu. Plastične cigle predstavljene su pomoću čvrstih elemenata, dok su spojevi od maltera modelovani putem kohezionih interakcija. Numerički model je validiran pomoću analize osetljivosti mreže i podvrgnut je vertikalnoj kompresiji, a zatim horizontalnom opterećenju.

Rezultati: Rezultati ukazuju na smanjivanje čvrstoće u odnosu na tradicionalne materijale za zidanje.Međutim, odgovor strukture bio je uspešan, kao i evolucija oštećenja zidanih zidova pod određenim uslovima opterećenja. Uprkos smanjenoj čvrstoći, strukture od cigala od reciklirane plastike pokazale su se kao izvodljive, a njihovo ponašanje pod uslovima opterećenja kao veoma dobar izvor informacija.

Zaključak: Ispitivanje je pokazalo da kompozitne cigle od plastike imaju potencijal da doprinesu održivoj gradnji. Rezultati su potvrdili mogućnost ugrađivanja plastičnih cigli u konstrukcije, pri čemu je naglašena korist za životnu sredinu i održivost. Takođe, unapređena je oblast održivih građevinskih materijala jer je potvrđena praktična primena i korist od korišćenja cigli od reciklirane plastike.

Reference

Abdelhak, B., Mahmoudi, N. & Hacen, M. 2018. Improvement of the Interfacial Adhesion Between Fiber and Matrix. Mechanics and Mechanical Engineering, 22(4), pp.885-893.

Abdelmegeed, M.M.A 2015. Damage assessement and rehabilitation of historic traditional masonry. PhD thesis. Athens, Greece: National Technical University of Athens (NTUA), Faculty of civil engineering [online]. Available at: https://www.fayoum.edu.eg/Arc/Restoration/pdf/MrMohamedPhd.pdf [Accessed: 21 April 2024].

Abdulla, K.F., Cunningham, L.S. & Gillie, M. 2017. Simulating masonry wall behaviour using a simplified micro-model approach. Engineering Structures, 151, pp.349-365. Available at: https://doi.org/10.1016/j.engstruct.2017.08.021.

Angelillo, M., Lourenço, P.B., Milani, G. 2014. Masonry behaviour and modelling. In: Angelillo, M. (Eds.) Mechanics of Masonry Structures. CISM International Centre for Mechanical Sciences, 551, pp.1-26. Vienna: Springer. Available at: https://doi.org/10.1007/978-3-7091-1774-3_1.

Benzeggagh, M.L. & Kenane, M. 1996. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4), pp.439-449. Available at: https://doi.org/10.1016/0266-3538(96)00005-X.

Bucknall, D.G. 2020. Plastics as a materials system in a circular economy. Philosophical Transactions of the Royal Society A, 378(2176), art.number:20190268. Available at: https://doi.org/10.1098/rsta.2019.0268.

Celano, T., Argiento, L.U., Ceroni, F. & Casapulla, C. 2021. In-Plane Behaviour of Masonry Walls: Numerical Analysis and Design Formulations. Materials, 14(19), art.number:5780. Available at: https://doi.org/10.3390/ma14195780.

Choi, H., Quan, C. & Jin, K. 2023. Nonlinear Performance Curve Estimation of Unreinforced Masonry Walls Subjected to In-Plane Rocking Behavior. Applied Sciences, 13(12), art.number:7298. Available at: https://doi.org/10.3390/app13127298.

Choudhury, T., Milani, G. & Kaushik, H.B. 2020. Experimental and numerical analyses of unreinforced masonry wall components and building. Construction and Building Materials, 257, art.number:119599. Available at: https://doi.org/10.1016/j.conbuildmat.2020.119599.

D’altri, A.M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A., Castellazzi, G. & de Miranda, S. 2020. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Archives of Computational Methods in Engineering, 27, pp.1153-1185. Available at: https://doi.org/10.1007/s11831-019-09351-x.

-Dassault Systems, The 3DEXPERIENCE platform. 2017. Simulia: Abaqus Finite Element Analysis for Mechanical Engineering and Civil Engineering [online]. Available at: https://www.3ds.com/products/simulia/abaqus [Accessed: 21 April 2024].

Debnath, P., Chandra Dutta, S. & Mandal, P. 2023. Lateral behaviour of masonry walls with different types of brick bonds, aspect ratio and strengthening measures by polypropylene bands and wire mesh. Structures, 49, pp.623-639. Available at: https://doi.org/10.1016/j.istruc.2023.01.155.

Desai, B.H. 2018. 14. United Nations Environment Program (UNEP). Yearbook of International Environmental Law, 32(1), pp.293-298. Available at: https://doi.org/10.1093/yiel/yvac039.

-Ellen MacArthur Foundation. 2017. The New Plastics Economy: Rethinking the future of plastics & catalysing action. Ellenmacarthurfoundation.org [online]. Available at: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing [Accessed: 21 April 2024].

Ghiassi, B., Marcari, G., Oliveira, D.V. & Lourenço, P.B. 2012. Numerical analysis of bond behavior between masonry bricks and composite materials. Engineering Structures, 43, pp.210-220. Available at: https://doi.org/10.1016/j.engstruct.2012.05.022.

Koocheki, K. & Pietruszczak, S. 2023. Numerical analysis of large masonry structures: bridging meso and macro scales via artificial neural networks. Computers & Structures, 283, art.number:107042. Available at: https://doi.org/10.1016/j.compstruc.2023.107042.

Krtinić, N., Gams, M. & Marinković, M. 2023. Experimental and numerical investigation of the seismic response of confined masonry walls. In: Papadrakakis, M. & Fragiadakis, M. (Eds.) ECCOMAS Proceedia COMPDYN 2023 - 9th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, pp.528-543, June 12-14. Available at: https://doi.org/10.7712/120123.10418.20831.

Kulkarni, P., Ravekar, V., Rao, P.R., Waigokar, S. & Hingankar, S. 2022. Recycling of waste HDPE and PP plastic in preparation of plastic brick and its mechanical properties. Cleaner Materials, 5, art.number:100113. Available at: https://doi.org/10.1016/j.clema.2022.100113.

Kumar, S. 2022. Challenge 2- Comparing the performance of three types of beams under bending load. Skill-Lync, 17 August [online]. Available at: https://skill-lync.com/student-projects/challenge-2-comparing-the-performance-of-three-types-of-beams-under-bending-load-9 [Accessed: 21 April 2024].

Kurian, J.N., Mohan, C.G., Mathew, J., Moolayil, J.T. & Sreekumar, C. 2016. Fabrication of Plastic Brick Manufacturing Machine and Brick Analysis. IJIRST –International Journal for Innovative Research in Science & Technology, 2(11), pp.455-462 [online]. Available at: https://ijirst.org/Article.php?manuscript=IJIRSTV2I11139 [Accessed: 21 April 2024].

Lamba, P., Kaur, D.P., Raj, S. & Sorout, J. 2022. Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environmental Science and Pollution Research, 29, pp.86156-86179. Available at: https://doi.org/10.1007/s11356-021-16980-y.

Lourenço, P.B. 1998. Experimental and numerical issues in the modelling of the mechanical behaviour of masonry. In: Roca, P., Gonzáles, J.L., Onate, E. & Lourenço, P.B. (Eds.) Structural Analysis of Historical Constructions II. Possibilites of the Numerical and Experimental, pp.57-91. Barcelona, Spain: International Centre for Numerical Methods in Engineering (CIMNE) [online] Available at: https://repositorium.sdum.uminho.pt/bitstream/1822/66261/1/57.pdf [Accessed: 21 April 2024]. ISBN: 84-89925-26-7.

Lourenço, P.B. 2002. Computations on historic masonry structures. Progress in Structural Engineering and Materials, 4(3), pp.301-319. Available at: https://doi.org/10.1002/pse.120.

Lourenço, P.B. & Rots, J.G. 1997. Multisurface Interface Model for Analysis of Masonry Structures. Journal of Engineering Mechanics, 123(7), pp.660-668. Available at: https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660).

Magomedov, I.A. & Sebaeva, Z.S. 2020. Comparative study of finite element analysis software packages. Journal of Physics: Conference Series, 1515, art.number:032073. Available at: https://doi.org/10.1088/1742-6596/1515/3/032073.

Mahmoudi, N. 2014. Effect of volume fiber and crack length on interlaminar fracture properties of glass fiber reinforced polyester composites (GF/PO composites). Mechanica, 20(2), pp.153-157. Available at: https://doi.org/10.5755/j01.mech.20.2.6934.

Mahmoudi, N. 2015. Improvement of mechanical and tribological properties of carbon fiber reinforced peek composite filled with carbon nanotubes. Annales de Chimie - Science des Matériaux, 39(1-2), pp.1-10.

Mojsilović, N., Simundic, G. & Page, A. 2009. Static-cyclic shear tests on masonry wallettes with a damp-proof course membrane. IBK Bericht, 319. Available at: https://doi.org/10.3929/ethz-a-006068632.

Moulai Arbi, Y., Mahmoudi, N. & Djebli, A. 2023. Manufacturing and testing of waste PET reinforced with sand bricks. Journal of Composite Materials, 57(16), pp.2513-2526. Available at: https://doi.org/10.1177/00219983231175203.

Nela, B. & Grajçevci, F. 2019. Numerical approach: FEM testing of masonry specimens with different bond configurations of units. In: Proceedings of Congress on Numerical Methods in Engineering (CMN), Guimarães, Portugal, pp.962-978, July 01-03 [online]. Available at: https://www.ehu.eus/documents/13131748/23070166/17.+Thermal+modelling_CMN2019.pdf/b08ec9a0-25ee-96d1-9fe3-0b7bed78b67f?t=1602150875189 [Accessed: 21 April 2024].

-OriginLab. 2020. OriginPro 2020. Northampton, MA, USA: OriginLab Corporation.

Pacheco-Torgal, F., Khatib, J., Colangelo, F. & Tuladhar, R. 2018. Use of Recycled Plastics in Eco-efficient Concrete, 1st Edition. Woodhead Publishing. ISBN: 9780081027332.

Pandey, B.H. & Meguro, K. 2004. Simulation of brick masonry wall behavior under in-plane lateral loading using applied element method. In: 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 1664, August 1-6 [online]. Available at: https://www.iitk.ac.in/nicee/wcee/article/13_1664.pdf [Accessed: 21 April 2024].

Petracca, M., Pelà, L., Rossi, R., Zaghi, S., Camata, G. & Spacone, E. 2017. Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Construction and Building Materials, 149, pp.296-314. Available at: https://doi.org/10.1016/j.conbuildmat.2017.05.130.

Ponte, M., Milosevic, J. & Bento, R. 2019. Parametrical study of rubble stone masonry panels through numerical modelling of the in-plane behaviour. Bulletin of Earthquake Engineering, 17, pp.1553-1574. Available at: https://doi.org/10.1007/s10518-018-0511-9.

Radnić, J., Matešan, D., Harapin, A., Smilović, M. & Grgić, N. 2012. Numerical Model for Static and Dynamic Analysis of Masonry Structures. In: Öchsner, A., da Silva, L. & Altenbach, H. (Eds.) Mechanics and Properties of Composed Materials and Structures. Advanced Structured Materials, 31, pp.1-33. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-642-31497-1_1.

Rafiee, A. & Vinches, M. 2013. Mechanical behaviour of a stone masonry bridge assessed using an implicit discrete element method. Engineering Structures, 48, pp.739-749. Available at: https://doi.org/10.1016/j.engstruct.2012.11.035.

Rahim, A.B., Noguez, C.C. & Pettit, C. 2024. Experimental Testing of Partially Grouted Masonry Shear Walls with Different Horizontal Reinforcement Types. In: Gupta, R., et al. (Eds.) Proceedings of the Canadian Society of Civil Engineering Annual Conference CSCE 2022. Lecture Notes in Civil Engineering, 359, pp.189-207. Cham: Springer. Available at: https://doi.org/10.1007/978-3-031-34027-7_13.

Raijmakers, T.M.J. 1992. Deformation controlled tests in masonry shear walls: report B-92-1156. Delft, Netherlands: TNO Bouw.

Ramos Huarachi, D.A., Gonçalves, G., de Francisco, A.C., Canteri, M.H.G. & Piekarski, C.M. 2020. Life cycle assessment of traditional and alternative bricks: A review. Environmental Impact Assessment Review, 80, art.number:106335. Available at: https://doi.org/10.1016/j.eiar.2019.106335.

Rashid, K., Ul Haq, E., Kamran, M.S., Munir, N., Shahid, A. & Hanif, I. 2019. Experimental and finite element analysis on thermal conductivity of burnt clay bricks reinforced with fibers. Construction and Building Materials, 221, pp.190-199. Available at: https://doi.org/10.1016/j.conbuildmat.2019.06.055.

Rezapour, M., Ghassemieh, M., Motavalli, M. & Shahverdi, M. 2021. Numerical Modeling of Unreinforced Masonry Walls Strengthened with Fe-Based Shape Memory Alloy Strips. Materials, 14(11), art.number:2961. Available at: https://doi.org/10.3390/ma14112961.

Roca, P., Cervera, M., Gariup, G. & Pela’, L. 2010. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Archives of Computational Methods in Engineering, 17, pp.299-325. Available at: https://doi.org/10.1007/s11831-010-9046-1.

Sarhosis, V., Garrity, S.W. & Sheng, Y. 2015. Influence of brick–mortar interface on the mechanical behaviour of low bond strength masonry brickwork lintels. Engineering Structures, 88, pp.1-11. Available at: https://doi.org/10.1016/j.engstruct.2014.12.014.

Sarhosis, V. & Lemos, J.V. 2018. A detailed micro-modelling approach for the structural analysis of masonry assemblages. Computers & Structures, 206, pp.66-81. Available at: https://doi.org/10.1016/j.compstruc.2018.06.003.

Singhal, A. & Netula, O. 2018. Utilization of plastic waste in manufacturing of plastic sand bricks. International Journal of Emerging Technologies and Innovative Research, 5(6), pp.300-303 [online]. Available at: https://www.jetir.org/view?paper=JETIRC006052 [Accessed: 21 April 2024].

Van Rossum, G. 1995. Python reference manual. Amsterdam, The Netherlands: Stichting Mathematisch Centrum - CWI [online]. Available at: https://ir.cwi.nl/pub/5008/05008D.pdf [Accessed: 21 April 2024].

Vargas, L., Sandoval, C., Bertolesi, E. & Calderón, S. 2023. Seismic behavior of partially grouted masonry shear walls containing openings: Experimental testing. Engineering Structures, 278, art.number:115549. Available at: https://doi.org/10.1016/j.engstruct.2022.115549.

Xia, F., Zhao, K., Zhao, J. & Cui, X. 2024. Experimental Study on the Seismic Performance of Brick Walls Strengthened by Small-Spaced Reinforced-Concrete–Masonry Composite Columns. Buildings, 14(1), art.number:184. Available at: https://doi.org/10.3390/buildings14010184.

Zhang, W., Kang, S., Liu, X., Lin, B. & Huang, Y. 2023. Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate. Journal of Building Engineering, 71, art.number:106522. Available at: https://doi.org/10.1016/j.jobe.2023.106522.

Zhai, C., Wang, X., Kong, J., Li, S. & Xie, L. 2017. Numerical Simulation of Masonry-Infilled RC Frames Using XFEM. Journal of Structural Engineering, 143(10). Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001886.

Objavljeno
2024/09/28
Rubrika
Originalni naučni radovi