Evaluating the structural performance of masonry walls incorporating recycled plastic bricks under monotonic and cyclic loading
Abstract
Introduction/purpose:This study evaluates the structural performance of masonry walls made from recycled plastic bricks under monotonic and cyclic loading. The purpose was to investigate the feasibility of using recycled plastic bricks as an alternative for masonry construction, focusing on their structural viability and potential environmental benefits.
Methods:A simplified micro-modeling approach in Abaqus was employed to simulate the behavior of these walls. The plastic bricks were represented with solid elements, while the mortar joints were modeled through cohesive interactions. The numerical model underwent validation through a mesh sensitivity analysis and was subjected to vertical compression followed by horizontal loading.
Results:The findings indicated a reduction in strength compared to traditional masonry materials. However, the study successfully captured the structural response and damage evolution of masonry walls under the specified loading conditions. Despite the reduced strength, the structural viability of recycled plastic bricks was strongly affirmed, and the behavior observed under load conditions was particularly informative.
Conclusions:The investigation underscored the potential of plastic composite bricks in contributing to sustainable building practices. The outcomes validated the feasibility of incorporating plastic bricks into construction, highlighting their environmental benefits and sustainable implications. This study advanced the field of sustainable construction materials by demonstrating the practical application and benefits of using recycled plastic bricks.
References
Abdelhak, B., Mahmoudi, N. & Hacen, M. 2018. Improvement of the Interfacial Adhesion Between Fiber and Matrix. Mechanics and Mechanical Engineering, 22(4), pp.885-893.
Abdelmegeed, M.M.A 2015. Damage assessement and rehabilitation of historic traditional masonry. PhD thesis. Athens, Greece: National Technical University of Athens (NTUA), Faculty of civil engineering [online]. Available at: https://www.fayoum.edu.eg/Arc/Restoration/pdf/MrMohamedPhd.pdf [Accessed: 21 April 2024].
Abdulla, K.F., Cunningham, L.S. & Gillie, M. 2017. Simulating masonry wall behaviour using a simplified micro-model approach. Engineering Structures, 151, pp.349-365. Available at: https://doi.org/10.1016/j.engstruct.2017.08.021.
Angelillo, M., Lourenço, P.B., Milani, G. 2014. Masonry behaviour and modelling. In: Angelillo, M. (Eds.) Mechanics of Masonry Structures. CISM International Centre for Mechanical Sciences, 551, pp.1-26. Vienna: Springer. Available at: https://doi.org/10.1007/978-3-7091-1774-3_1.
Benzeggagh, M.L. & Kenane, M. 1996. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4), pp.439-449. Available at: https://doi.org/10.1016/0266-3538(96)00005-X.
Bucknall, D.G. 2020. Plastics as a materials system in a circular economy. Philosophical Transactions of the Royal Society A, 378(2176), art.number:20190268. Available at: https://doi.org/10.1098/rsta.2019.0268.
Celano, T., Argiento, L.U., Ceroni, F. & Casapulla, C. 2021. In-Plane Behaviour of Masonry Walls: Numerical Analysis and Design Formulations. Materials, 14(19), art.number:5780. Available at: https://doi.org/10.3390/ma14195780.
Choi, H., Quan, C. & Jin, K. 2023. Nonlinear Performance Curve Estimation of Unreinforced Masonry Walls Subjected to In-Plane Rocking Behavior. Applied Sciences, 13(12), art.number:7298. Available at: https://doi.org/10.3390/app13127298.
Choudhury, T., Milani, G. & Kaushik, H.B. 2020. Experimental and numerical analyses of unreinforced masonry wall components and building. Construction and Building Materials, 257, art.number:119599. Available at: https://doi.org/10.1016/j.conbuildmat.2020.119599.
D’altri, A.M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A., Castellazzi, G. & de Miranda, S. 2020. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Archives of Computational Methods in Engineering, 27, pp.1153-1185. Available at: https://doi.org/10.1007/s11831-019-09351-x.
-Dassault Systems, The 3DEXPERIENCE platform. 2017. Simulia: Abaqus Finite Element Analysis for Mechanical Engineering and Civil Engineering [online]. Available at: https://www.3ds.com/products/simulia/abaqus [Accessed: 21 April 2024].
Debnath, P., Chandra Dutta, S. & Mandal, P. 2023. Lateral behaviour of masonry walls with different types of brick bonds, aspect ratio and strengthening measures by polypropylene bands and wire mesh. Structures, 49, pp.623-639. Available at: https://doi.org/10.1016/j.istruc.2023.01.155.
Desai, B.H. 2018. 14. United Nations Environment Program (UNEP). Yearbook of International Environmental Law, 32(1), pp.293-298. Available at: https://doi.org/10.1093/yiel/yvac039.
-Ellen MacArthur Foundation. 2017. The New Plastics Economy: Rethinking the future of plastics & catalysing action. Ellenmacarthurfoundation.org [online]. Available at: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing [Accessed: 21 April 2024].
Ghiassi, B., Marcari, G., Oliveira, D.V. & Lourenço, P.B. 2012. Numerical analysis of bond behavior between masonry bricks and composite materials. Engineering Structures, 43, pp.210-220. Available at: https://doi.org/10.1016/j.engstruct.2012.05.022.
Koocheki, K. & Pietruszczak, S. 2023. Numerical analysis of large masonry structures: bridging meso and macro scales via artificial neural networks. Computers & Structures, 283, art.number:107042. Available at: https://doi.org/10.1016/j.compstruc.2023.107042.
Krtinić, N., Gams, M. & Marinković, M. 2023. Experimental and numerical investigation of the seismic response of confined masonry walls. In: Papadrakakis, M. & Fragiadakis, M. (Eds.) ECCOMAS Proceedia COMPDYN 2023 - 9th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, pp.528-543, June 12-14. Available at: https://doi.org/10.7712/120123.10418.20831.
Kulkarni, P., Ravekar, V., Rao, P.R., Waigokar, S. & Hingankar, S. 2022. Recycling of waste HDPE and PP plastic in preparation of plastic brick and its mechanical properties. Cleaner Materials, 5, art.number:100113. Available at: https://doi.org/10.1016/j.clema.2022.100113.
Kumar, S. 2022. Challenge 2- Comparing the performance of three types of beams under bending load. Skill-Lync, 17 August [online]. Available at: https://skill-lync.com/student-projects/challenge-2-comparing-the-performance-of-three-types-of-beams-under-bending-load-9 [Accessed: 21 April 2024].
Kurian, J.N., Mohan, C.G., Mathew, J., Moolayil, J.T. & Sreekumar, C. 2016. Fabrication of Plastic Brick Manufacturing Machine and Brick Analysis. IJIRST –International Journal for Innovative Research in Science & Technology, 2(11), pp.455-462 [online]. Available at: https://ijirst.org/Article.php?manuscript=IJIRSTV2I11139 [Accessed: 21 April 2024].
Lamba, P., Kaur, D.P., Raj, S. & Sorout, J. 2022. Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environmental Science and Pollution Research, 29, pp.86156-86179. Available at: https://doi.org/10.1007/s11356-021-16980-y.
Lourenço, P.B. 1998. Experimental and numerical issues in the modelling of the mechanical behaviour of masonry. In: Roca, P., Gonzáles, J.L., Onate, E. & Lourenço, P.B. (Eds.) Structural Analysis of Historical Constructions II. Possibilites of the Numerical and Experimental, pp.57-91. Barcelona, Spain: International Centre for Numerical Methods in Engineering (CIMNE) [online] Available at: https://repositorium.sdum.uminho.pt/bitstream/1822/66261/1/57.pdf [Accessed: 21 April 2024]. ISBN: 84-89925-26-7.
Lourenço, P.B. 2002. Computations on historic masonry structures. Progress in Structural Engineering and Materials, 4(3), pp.301-319. Available at: https://doi.org/10.1002/pse.120.
Lourenço, P.B. & Rots, J.G. 1997. Multisurface Interface Model for Analysis of Masonry Structures. Journal of Engineering Mechanics, 123(7), pp.660-668. Available at: https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660).
Magomedov, I.A. & Sebaeva, Z.S. 2020. Comparative study of finite element analysis software packages. Journal of Physics: Conference Series, 1515, art.number:032073. Available at: https://doi.org/10.1088/1742-6596/1515/3/032073.
Mahmoudi, N. 2014. Effect of volume fiber and crack length on interlaminar fracture properties of glass fiber reinforced polyester composites (GF/PO composites). Mechanica, 20(2), pp.153-157. Available at: https://doi.org/10.5755/j01.mech.20.2.6934.
Mahmoudi, N. 2015. Improvement of mechanical and tribological properties of carbon fiber reinforced peek composite filled with carbon nanotubes. Annales de Chimie - Science des Matériaux, 39(1-2), pp.1-10.
Mojsilović, N., Simundic, G. & Page, A. 2009. Static-cyclic shear tests on masonry wallettes with a damp-proof course membrane. IBK Bericht, 319. Available at: https://doi.org/10.3929/ethz-a-006068632.
Moulai Arbi, Y., Mahmoudi, N. & Djebli, A. 2023. Manufacturing and testing of waste PET reinforced with sand bricks. Journal of Composite Materials, 57(16), pp.2513-2526. Available at: https://doi.org/10.1177/00219983231175203.
Nela, B. & Grajçevci, F. 2019. Numerical approach: FEM testing of masonry specimens with different bond configurations of units. In: Proceedings of Congress on Numerical Methods in Engineering (CMN), Guimarães, Portugal, pp.962-978, July 01-03 [online]. Available at: https://www.ehu.eus/documents/13131748/23070166/17.+Thermal+modelling_CMN2019.pdf/b08ec9a0-25ee-96d1-9fe3-0b7bed78b67f?t=1602150875189 [Accessed: 21 April 2024].
-OriginLab. 2020. OriginPro 2020. Northampton, MA, USA: OriginLab Corporation.
Pacheco-Torgal, F., Khatib, J., Colangelo, F. & Tuladhar, R. 2018. Use of Recycled Plastics in Eco-efficient Concrete, 1st Edition. Woodhead Publishing. ISBN: 9780081027332.
Pandey, B.H. & Meguro, K. 2004. Simulation of brick masonry wall behavior under in-plane lateral loading using applied element method. In: 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 1664, August 1-6 [online]. Available at: https://www.iitk.ac.in/nicee/wcee/article/13_1664.pdf [Accessed: 21 April 2024].
Petracca, M., Pelà, L., Rossi, R., Zaghi, S., Camata, G. & Spacone, E. 2017. Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Construction and Building Materials, 149, pp.296-314. Available at: https://doi.org/10.1016/j.conbuildmat.2017.05.130.
Ponte, M., Milosevic, J. & Bento, R. 2019. Parametrical study of rubble stone masonry panels through numerical modelling of the in-plane behaviour. Bulletin of Earthquake Engineering, 17, pp.1553-1574. Available at: https://doi.org/10.1007/s10518-018-0511-9.
Radnić, J., Matešan, D., Harapin, A., Smilović, M. & Grgić, N. 2012. Numerical Model for Static and Dynamic Analysis of Masonry Structures. In: Öchsner, A., da Silva, L. & Altenbach, H. (Eds.) Mechanics and Properties of Composed Materials and Structures. Advanced Structured Materials, 31, pp.1-33. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-642-31497-1_1.
Rafiee, A. & Vinches, M. 2013. Mechanical behaviour of a stone masonry bridge assessed using an implicit discrete element method. Engineering Structures, 48, pp.739-749. Available at: https://doi.org/10.1016/j.engstruct.2012.11.035.
Rahim, A.B., Noguez, C.C. & Pettit, C. 2024. Experimental Testing of Partially Grouted Masonry Shear Walls with Different Horizontal Reinforcement Types. In: Gupta, R., et al. (Eds.) Proceedings of the Canadian Society of Civil Engineering Annual Conference CSCE 2022. Lecture Notes in Civil Engineering, 359, pp.189-207. Cham: Springer. Available at: https://doi.org/10.1007/978-3-031-34027-7_13.
Raijmakers, T.M.J. 1992. Deformation controlled tests in masonry shear walls: report B-92-1156. Delft, Netherlands: TNO Bouw.
Ramos Huarachi, D.A., Gonçalves, G., de Francisco, A.C., Canteri, M.H.G. & Piekarski, C.M. 2020. Life cycle assessment of traditional and alternative bricks: A review. Environmental Impact Assessment Review, 80, art.number:106335. Available at: https://doi.org/10.1016/j.eiar.2019.106335.
Rashid, K., Ul Haq, E., Kamran, M.S., Munir, N., Shahid, A. & Hanif, I. 2019. Experimental and finite element analysis on thermal conductivity of burnt clay bricks reinforced with fibers. Construction and Building Materials, 221, pp.190-199. Available at: https://doi.org/10.1016/j.conbuildmat.2019.06.055.
Rezapour, M., Ghassemieh, M., Motavalli, M. & Shahverdi, M. 2021. Numerical Modeling of Unreinforced Masonry Walls Strengthened with Fe-Based Shape Memory Alloy Strips. Materials, 14(11), art.number:2961. Available at: https://doi.org/10.3390/ma14112961.
Roca, P., Cervera, M., Gariup, G. & Pela’, L. 2010. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Archives of Computational Methods in Engineering, 17, pp.299-325. Available at: https://doi.org/10.1007/s11831-010-9046-1.
Sarhosis, V., Garrity, S.W. & Sheng, Y. 2015. Influence of brick–mortar interface on the mechanical behaviour of low bond strength masonry brickwork lintels. Engineering Structures, 88, pp.1-11. Available at: https://doi.org/10.1016/j.engstruct.2014.12.014.
Sarhosis, V. & Lemos, J.V. 2018. A detailed micro-modelling approach for the structural analysis of masonry assemblages. Computers & Structures, 206, pp.66-81. Available at: https://doi.org/10.1016/j.compstruc.2018.06.003.
Singhal, A. & Netula, O. 2018. Utilization of plastic waste in manufacturing of plastic sand bricks. International Journal of Emerging Technologies and Innovative Research, 5(6), pp.300-303 [online]. Available at: https://www.jetir.org/view?paper=JETIRC006052 [Accessed: 21 April 2024].
Van Rossum, G. 1995. Python reference manual. Amsterdam, The Netherlands: Stichting Mathematisch Centrum - CWI [online]. Available at: https://ir.cwi.nl/pub/5008/05008D.pdf [Accessed: 21 April 2024].
Vargas, L., Sandoval, C., Bertolesi, E. & Calderón, S. 2023. Seismic behavior of partially grouted masonry shear walls containing openings: Experimental testing. Engineering Structures, 278, art.number:115549. Available at: https://doi.org/10.1016/j.engstruct.2022.115549.
Xia, F., Zhao, K., Zhao, J. & Cui, X. 2024. Experimental Study on the Seismic Performance of Brick Walls Strengthened by Small-Spaced Reinforced-Concrete–Masonry Composite Columns. Buildings, 14(1), art.number:184. Available at: https://doi.org/10.3390/buildings14010184.
Zhang, W., Kang, S., Liu, X., Lin, B. & Huang, Y. 2023. Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate. Journal of Building Engineering, 71, art.number:106522. Available at: https://doi.org/10.1016/j.jobe.2023.106522.
Zhai, C., Wang, X., Kong, J., Li, S. & Xie, L. 2017. Numerical Simulation of Masonry-Infilled RC Frames Using XFEM. Journal of Structural Engineering, 143(10). Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001886.
Copyright (c) 2024 Youcef Moulai Arbi, Noureddine Mahmoudi, Mohammed Bentahar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).