Uticaj skupljanja, temperature i stepena sprezanja (N/Nf) na ponašanje spregnutog čelično-betonskog nosača

  • Halima Aouad Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-1999-1489
  • Nacer Rahal Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir + Univerzitet prirodnih nauka i tehnologije, Laboratorija za mašinske strukture i stabilnost konstrukcije, Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-0400-8360
  • Houda Beghdad Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0001-3548-5138
  • Mohamed Sadoun Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0008-2314-9402
  • Abdelaziz Souici Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir + Univerzitet prirodnih nauka i tehnologije, Laboratorija za mašinske strukture i stabilnost konstrukcije, Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-3845-7409
  • Sara Zatir Univerzitet „Tahri Mohamed Bešar”, Odeljenje za arhitekturu i urbanizam, Bešar, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-6187-3441
  • Khaled Benmahdi Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8244-5817
Ključne reči: stepen sprezanja (N/Nf), skupljanje, vreme, interfejs čelik-beton

Sažetak


Uvod/cilj: Temperatura i efekti zavisni od vremena, kao što su tečenje i skupljanje betona, znatno utiču na ponašanje spregnutih nosača od čelika i betona. Stoga je neophodno uzeti u obzir zahteve ovih dodatnih efekata koji su predmet različitih teorijskih i numeričkih istraživanja. U ovoj studiji predlaže se analitički alat sposoban da predvidi novu preraspodelu napona prouzrokovanu kombinovanim delovanjem temperature i skupljanja betona u spregnutim čelično-betonskim nosačima u parcijalnom smičućem spoju. Takođe, uzima se u obzir parcijalni smičući spoj na interfejsu čelik-beton prema stepenu sprezanja (N/Nf).

Metode: Preformulisan je model koji su Rahal i saradnici predložili 2024. godine analizirajući ponašanje spregnutih čelično-betonskih nosača u punom sprezanju pod uticajem temperature i skupljanja betona. Glavni doprinos ove studije predstavlja uvođenje uticaja stepena sprezanja (N/Nf) na interfejsu čelik-beton. Time se dolazi do analitičkog modela sposobnog da predvidi dodatna naprezanja usled skupljanja i temperature u spregnutim čelično-betonskim gredama u parcijalnom smičućem spoju.

Rezultati: U odnosu na model koji su Rahal i saradnici predložili 2024. godine, ispostavilo se da su rezultati pristupa iz studije zadovoljavajući. Oni jasno pokazuju da stepen sprezanja značajno utiče na sile nastale kombinovanim delovanjem skupljanja betona i temperature.

Zaključak: Rezultati navedenog pristupa dobro se slažu sa rezultatima postojećeg modela koji su razvili Rahal i saradnici. Jasno se pokazuje uticaj skupljanja betona i temperature u funkciji stepena sprezanja (N/Nf) na ponašanje spregnutih čelično-betonskih nosača.

 

Reference

Al-deen, S., Ranzi, G. & Vrcelj, Z. 2011a. Full-scale long-term experiments of simply supported composite beams with solid slabs. Journal of Constructional Steel Research, 67(3), pp.308-321. Available at: https://doi.org/10.1016/j.jcsr.2010.11.001.

Al-deen, S., Ranzi, G & Vrcelj, Z. 2011b. Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck. Journal of Constructional Steel Research, 67(10), pp.1658-1676. Available at: https://doi.org/10.1016/j.jcsr.2011.04.010.

Amadio, C. & Fragiacomo, M. 1997. Simplified Approach to Evaluate Creep and Shrinkage Effects in Steel-Concrete Composite Beams. Journal of Structural Engineering, 123(9), pp.1153-1162. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153).

Beer, G. 2010. Baustatik: Von den Grundlagen bis zur Computerstatik (Textbook Series TU Graz). Verlag d. Technischen Universität Graz. ISBN: 978-3851251210.

Beghdad, H., Tehami, M. & Rahal, N. 2017. Shrinkage behaviour modelling of steel-concrete composite beams with varying degree of connection. Asian Journal of Civil Engineering (BHRC), 18(8), pp.1271-1285 [online]. Available at: https://ajce.bhrc.ac.ir/Volumes-Issues/agentType/View/PropertyID/9500 [Accessed: 02 May 2024].

Bradford, M.A. & Gilbert, R.I. 1991. Time-dependent behaviour of simply-supported steel-concrete composite beams. Magazine of Concrete Research, 43(157), pp.265-274. Available at: https://doi.org/10.1680/macr.1991.43.157.265.

Bradford, M.A. & Gilbert, R.I. 1992. Composite Beams with Partial Interaction under Sustained Loads. Journal of Structural Engineering, 118(7), pp.1871-1883. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1871).

Dias, M.S.F. & Karam, V.J. 2021. Thermal analysis of steel and concrete composite beams cross sections in fire situations. IBRACON Structures and Materials Journal, 14(5), e14509. Available at: https://doi.org/10.1590/S1983-41952021000500009.

-European Standard. 2004. EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings [online]. Available at: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf [Accessed: 02 May 2024].

Faella, C., Martinelli, E. & Nigro, E. 2010. Steel-concrete composite beams in partial interaction: Closed-form ‘‘exact” expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32(9), pp.2744-2754. Available at: https://doi.org/10.1016/j.engstruct.2010.04.044.

Fan, J., Nie, J., Li, Q. & Wang, H. 2010a. Long-Term Behavior of Composite Beams under Positive and Negative Bending. I: Experimental Study. Journal of Structural Engineering, 136(7), pp.849-857. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000175.

Fan, J., Nie, X., Li, Quan & Li, Quanwang. 2010b. Long-Term Behavior of Composite Beams under Positive and Negative Bending. II: Analytical Study. Journal of Structural Engineering, 136(7), pp.858-865. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000176.

Favre, R., Jaccourd, J.-P., Burdet, O. & Charif, H. 1996. Dimensionnement des structures en béton : aptitude au service et éléments de structures. Presses Polytechniques et Universitaires Romandes (PPUR). ISBN: 978-2-88074-330-7.

Gara, F., Ranzi, G. & Leoni, G. 2010. Short- and long-term analytical solutions for composite beams with partial interaction and shear-lag effects. International Journal of Steel Structures, 10(4), pp.359-372. Available at: https://doi.org/10.1007/BF03215844.

Gerhard, E. 1998. Praktische Baustatik, Teil 2. Vieweg+Teubner Verlag Wiesbaden. Available at: https://doi.org/10.1007/978-3-663-11118-4.

Gilbert, R.I. 1989. Time‐Dependent Analysis of Composite Steel‐Concrete Sections. Journal of Structural Engineering, 115(11), pp.2687-2705. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687).

Gilbert. R.I. & Ranzi, G. 2011. Time Dependent Behaviour of Concrete Structures, 1st Edition. CRC Press. Available at: https://doi.org/10.1201/9781482288711.

Hendy, C.R. & Johnson, R.P. 2006. Designers' guide to EN 1994-2 Eurocode 4 : design of composite steel and concrete structures. Part 2, General rules and rules for bridges. London, UK: Thomas Telford Ltd. ISBN: 978-0727731616.

Kumar Mehta, P. & Monteiro, P.J.M. 2005. Concrete: Microstructure, Properties and Materials, Third Edition. ‎ McGraw-Hill Professional. ISBN: 978-0071462891.

Kwak, H.-G & Seo, Y.-J. 2000. Long-term behavior of composite girder bridges. Computer Structures, 74(5), pp.583-599. Available at: https://doi.org/10.1016/S0045-7949(99)00064-4.

Newmark, N.M, Siess, C.P. & Viest, I.M. 1951. Tests and analysis of composite beams with incomplete interaction. Proceedings of the Society for Experimental Stress Analysis, 9(1), pp.75-92.

Nie, J. & Cai, C.S. 2003. Steel–Concrete Composite Beams Considering Shear Slip Effects. Journal of Structural Engineering, 129(4), pp.495-506. Available at: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495).

Partov, D. & Kantchev, V. 2009. Time-dependent analysis of composite steel-concrete beams using integral equation of Volterra, according Eurocode 4. Engineering Mechanics, 16(5), pp.367-392 [online]. Available at: https://web.archive.org/web/20200321071535id_/http://www.engineeringmechanics.cz/pdf/16_5_367.pdf [Accessed: 02 May 2024].

Partov, D. & Kantchev, V. 2011. Level of creep sensitivity in composite steel-concrete beams according to ACI 209R-92 model, comparison with Eurocode-4 (CEB MC90-99). Engineering Mechanics, 18(2), p. 91-116 [online]. Available at: http://147.229.35.49/pdf/18_2_091.pdf [Accessed: 02 May 2024].

Partov, D. & Kantchev, V. 2012. Gardner&Lockman Model (2000) and its Application in Numerical Analysis of Composite Beams. Procedia Engineering, 40, pp.357-362. Available at: https://doi.org/10.1016/j.proeng.2012.07.108.

Partov, D. & Kantchev, V. 2014. Gardner and Lockman Model in Creep Analysis of Composite Steel-Concrete Sections. ACI Structural Journal, 111(1), pp.59-70. Available at: https://doi.org/10.14359/51686430.

Rahal, N., Souici, A., Beghdad, H., Tehami, M., Djaffari, D., Sadoun, M. & Benmahdi, K. 2024. Effects of shrinkage in composite steel-concrete beam subjected to fire. Steel and Composite Structures, 50(4), pp.375-382. Available at: https://doi.org/10.12989/scs.2024.50.4.375.

Rahal, N., Tehami, M., Souici, A. & Beghdad, H. 2012. Applying of Integral Equation of Volterra for Determining the Section Forces in Composite Beam, Regarding Shrinkage of Concrete. Key Engineering Materials, 498, pp.173-186. Available at: https://doi.org/10.4028/www.scientific.net/KEM.498.173.

Ranzi, G. & Bradford, M.A. 2006. Analytical solutions for the time dependent behavior of composite beams with partial interaction. International Journal of Solid and Structures, 43(13), pp.3770-3793. Available at: https://doi.org/10.1016/j.ijsolstr.2005.03.032.

Roll, F. 1971. Effects of Differential Shrinkage and Creep on a Composite Steel-Concrete Structure. ACI Symposium Publication, 27, pp.187-214 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/17182 [Accessed: 02 May 2024].

Sakr, M.A. & Sakla, S.S.S. 2008. Long-term deflection of cracked composite beams with nonlinear partial shear interaction: I — Finite element modeling. Journal of Constructional Steel Research, 64(12), pp.1446-1455. Available at: https://doi.org/10.1016/j.jcsr.2008.01.003.

Souici, A., Tehami, M., Rahal, N., Bekkouche, M.S. & Berthet. J.F. 2015. Creep effect on composite beam with perfect steel-concrete connection. International Journal of Steel Structures, 15(2), pp.433-445. Available at: https://doi.org/10.1007/s13296-015-6013-6.

Szabó, B. 2006. Influence of shear connectors on the elastic behaviour of composite girders. PhD thesis. Otaniemi, Espoo: Helsinki University of Technology [online]. Available at: https://aaltodoc.aalto.fi/items/5856e568-6ec5-4a9e-8232-f2fd69723786 [Accessed: 02 May 2024].

Tarantino, A.M. & Dezi, L. 1992. Creep Effects in Composite Beams with Flexible Shear Connectors. Journal of Structural Engineering, 118(8), pp.2063-2080. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2063).

Tehami, M. & Ramdane, K.-E. 2009. Creep behaviour modelling of a composite steel-concrete section. Journal of Constructional Steel Research, 65(5), pp.1029-1033. Available at: https://doi.org/10.1016/j.jcsr.2009.01.001.

Wen, C., Lin, Z., Xu, Z., Xu, C., Liu, X. & Yang, G. 2024. Time-dependent response of continuous steel-concrete composite beams under sustained loading. Journal of Constructional Steel Research, 213, art.number: 108339. Available at: https://doi.org/10.1016/j.jcsr.2023.108339.

Xiang, T., Yang, C. & Zhao, G. 2015. Stochastic Creep and Shrinkage Effect of Steel-Concrete Composite Beam. Advances in Structural Engineering, 18(8), pp.1129-1140. Available at: https://doi.org/10.1260/1369-4332.18.8.1129.

Objavljeno
2025/02/02
Rubrika
Originalni naučni radovi