Uticaj skupljanja, temperature i stepena sprezanja (N/Nf) na ponašanje spregnutog čelično-betonskog nosača
Sažetak
Uvod/cilj: Temperatura i efekti zavisni od vremena, kao što su tečenje i skupljanje betona, znatno utiču na ponašanje spregnutih nosača od čelika i betona. Stoga je neophodno uzeti u obzir zahteve ovih dodatnih efekata koji su predmet različitih teorijskih i numeričkih istraživanja. U ovoj studiji predlaže se analitički alat sposoban da predvidi novu preraspodelu napona prouzrokovanu kombinovanim delovanjem temperature i skupljanja betona u spregnutim čelično-betonskim nosačima u parcijalnom smičućem spoju. Takođe, uzima se u obzir parcijalni smičući spoj na interfejsu čelik-beton prema stepenu sprezanja (N/Nf).
Metode: Preformulisan je model koji su Rahal i saradnici predložili 2024. godine analizirajući ponašanje spregnutih čelično-betonskih nosača u punom sprezanju pod uticajem temperature i skupljanja betona. Glavni doprinos ove studije predstavlja uvođenje uticaja stepena sprezanja (N/Nf) na interfejsu čelik-beton. Time se dolazi do analitičkog modela sposobnog da predvidi dodatna naprezanja usled skupljanja i temperature u spregnutim čelično-betonskim gredama u parcijalnom smičućem spoju.
Rezultati: U odnosu na model koji su Rahal i saradnici predložili 2024. godine, ispostavilo se da su rezultati pristupa iz studije zadovoljavajući. Oni jasno pokazuju da stepen sprezanja značajno utiče na sile nastale kombinovanim delovanjem skupljanja betona i temperature.
Zaključak: Rezultati navedenog pristupa dobro se slažu sa rezultatima postojećeg modela koji su razvili Rahal i saradnici. Jasno se pokazuje uticaj skupljanja betona i temperature u funkciji stepena sprezanja (N/Nf) na ponašanje spregnutih čelično-betonskih nosača.
Reference
Al-deen, S., Ranzi, G. & Vrcelj, Z. 2011a. Full-scale long-term experiments of simply supported composite beams with solid slabs. Journal of Constructional Steel Research, 67(3), pp.308-321. Available at: https://doi.org/10.1016/j.jcsr.2010.11.001.
Al-deen, S., Ranzi, G & Vrcelj, Z. 2011b. Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck. Journal of Constructional Steel Research, 67(10), pp.1658-1676. Available at: https://doi.org/10.1016/j.jcsr.2011.04.010.
Amadio, C. & Fragiacomo, M. 1997. Simplified Approach to Evaluate Creep and Shrinkage Effects in Steel-Concrete Composite Beams. Journal of Structural Engineering, 123(9), pp.1153-1162. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153).
Beer, G. 2010. Baustatik: Von den Grundlagen bis zur Computerstatik (Textbook Series TU Graz). Verlag d. Technischen Universität Graz. ISBN: 978-3851251210.
Beghdad, H., Tehami, M. & Rahal, N. 2017. Shrinkage behaviour modelling of steel-concrete composite beams with varying degree of connection. Asian Journal of Civil Engineering (BHRC), 18(8), pp.1271-1285 [online]. Available at: https://ajce.bhrc.ac.ir/Volumes-Issues/agentType/View/PropertyID/9500 [Accessed: 02 May 2024].
Bradford, M.A. & Gilbert, R.I. 1991. Time-dependent behaviour of simply-supported steel-concrete composite beams. Magazine of Concrete Research, 43(157), pp.265-274. Available at: https://doi.org/10.1680/macr.1991.43.157.265.
Bradford, M.A. & Gilbert, R.I. 1992. Composite Beams with Partial Interaction under Sustained Loads. Journal of Structural Engineering, 118(7), pp.1871-1883. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1871).
Dias, M.S.F. & Karam, V.J. 2021. Thermal analysis of steel and concrete composite beams cross sections in fire situations. IBRACON Structures and Materials Journal, 14(5), e14509. Available at: https://doi.org/10.1590/S1983-41952021000500009.
-European Standard. 2004. EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings [online]. Available at: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf [Accessed: 02 May 2024].
Faella, C., Martinelli, E. & Nigro, E. 2010. Steel-concrete composite beams in partial interaction: Closed-form ‘‘exact” expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32(9), pp.2744-2754. Available at: https://doi.org/10.1016/j.engstruct.2010.04.044.
Fan, J., Nie, J., Li, Q. & Wang, H. 2010a. Long-Term Behavior of Composite Beams under Positive and Negative Bending. I: Experimental Study. Journal of Structural Engineering, 136(7), pp.849-857. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000175.
Fan, J., Nie, X., Li, Quan & Li, Quanwang. 2010b. Long-Term Behavior of Composite Beams under Positive and Negative Bending. II: Analytical Study. Journal of Structural Engineering, 136(7), pp.858-865. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000176.
Favre, R., Jaccourd, J.-P., Burdet, O. & Charif, H. 1996. Dimensionnement des structures en béton : aptitude au service et éléments de structures. Presses Polytechniques et Universitaires Romandes (PPUR). ISBN: 978-2-88074-330-7.
Gara, F., Ranzi, G. & Leoni, G. 2010. Short- and long-term analytical solutions for composite beams with partial interaction and shear-lag effects. International Journal of Steel Structures, 10(4), pp.359-372. Available at: https://doi.org/10.1007/BF03215844.
Gerhard, E. 1998. Praktische Baustatik, Teil 2. Vieweg+Teubner Verlag Wiesbaden. Available at: https://doi.org/10.1007/978-3-663-11118-4.
Gilbert, R.I. 1989. Time‐Dependent Analysis of Composite Steel‐Concrete Sections. Journal of Structural Engineering, 115(11), pp.2687-2705. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687).
Gilbert. R.I. & Ranzi, G. 2011. Time Dependent Behaviour of Concrete Structures, 1st Edition. CRC Press. Available at: https://doi.org/10.1201/9781482288711.
Hendy, C.R. & Johnson, R.P. 2006. Designers' guide to EN 1994-2 Eurocode 4 : design of composite steel and concrete structures. Part 2, General rules and rules for bridges. London, UK: Thomas Telford Ltd. ISBN: 978-0727731616.
Kumar Mehta, P. & Monteiro, P.J.M. 2005. Concrete: Microstructure, Properties and Materials, Third Edition. McGraw-Hill Professional. ISBN: 978-0071462891.
Kwak, H.-G & Seo, Y.-J. 2000. Long-term behavior of composite girder bridges. Computer Structures, 74(5), pp.583-599. Available at: https://doi.org/10.1016/S0045-7949(99)00064-4.
Newmark, N.M, Siess, C.P. & Viest, I.M. 1951. Tests and analysis of composite beams with incomplete interaction. Proceedings of the Society for Experimental Stress Analysis, 9(1), pp.75-92.
Nie, J. & Cai, C.S. 2003. Steel–Concrete Composite Beams Considering Shear Slip Effects. Journal of Structural Engineering, 129(4), pp.495-506. Available at: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495).
Partov, D. & Kantchev, V. 2009. Time-dependent analysis of composite steel-concrete beams using integral equation of Volterra, according Eurocode 4. Engineering Mechanics, 16(5), pp.367-392 [online]. Available at: https://web.archive.org/web/20200321071535id_/http://www.engineeringmechanics.cz/pdf/16_5_367.pdf [Accessed: 02 May 2024].
Partov, D. & Kantchev, V. 2011. Level of creep sensitivity in composite steel-concrete beams according to ACI 209R-92 model, comparison with Eurocode-4 (CEB MC90-99). Engineering Mechanics, 18(2), p. 91-116 [online]. Available at: http://147.229.35.49/pdf/18_2_091.pdf [Accessed: 02 May 2024].
Partov, D. & Kantchev, V. 2012. Gardner&Lockman Model (2000) and its Application in Numerical Analysis of Composite Beams. Procedia Engineering, 40, pp.357-362. Available at: https://doi.org/10.1016/j.proeng.2012.07.108.
Partov, D. & Kantchev, V. 2014. Gardner and Lockman Model in Creep Analysis of Composite Steel-Concrete Sections. ACI Structural Journal, 111(1), pp.59-70. Available at: https://doi.org/10.14359/51686430.
Rahal, N., Souici, A., Beghdad, H., Tehami, M., Djaffari, D., Sadoun, M. & Benmahdi, K. 2024. Effects of shrinkage in composite steel-concrete beam subjected to fire. Steel and Composite Structures, 50(4), pp.375-382. Available at: https://doi.org/10.12989/scs.2024.50.4.375.
Rahal, N., Tehami, M., Souici, A. & Beghdad, H. 2012. Applying of Integral Equation of Volterra for Determining the Section Forces in Composite Beam, Regarding Shrinkage of Concrete. Key Engineering Materials, 498, pp.173-186. Available at: https://doi.org/10.4028/www.scientific.net/KEM.498.173.
Ranzi, G. & Bradford, M.A. 2006. Analytical solutions for the time dependent behavior of composite beams with partial interaction. International Journal of Solid and Structures, 43(13), pp.3770-3793. Available at: https://doi.org/10.1016/j.ijsolstr.2005.03.032.
Roll, F. 1971. Effects of Differential Shrinkage and Creep on a Composite Steel-Concrete Structure. ACI Symposium Publication, 27, pp.187-214 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/17182 [Accessed: 02 May 2024].
Sakr, M.A. & Sakla, S.S.S. 2008. Long-term deflection of cracked composite beams with nonlinear partial shear interaction: I — Finite element modeling. Journal of Constructional Steel Research, 64(12), pp.1446-1455. Available at: https://doi.org/10.1016/j.jcsr.2008.01.003.
Souici, A., Tehami, M., Rahal, N., Bekkouche, M.S. & Berthet. J.F. 2015. Creep effect on composite beam with perfect steel-concrete connection. International Journal of Steel Structures, 15(2), pp.433-445. Available at: https://doi.org/10.1007/s13296-015-6013-6.
Szabó, B. 2006. Influence of shear connectors on the elastic behaviour of composite girders. PhD thesis. Otaniemi, Espoo: Helsinki University of Technology [online]. Available at: https://aaltodoc.aalto.fi/items/5856e568-6ec5-4a9e-8232-f2fd69723786 [Accessed: 02 May 2024].
Tarantino, A.M. & Dezi, L. 1992. Creep Effects in Composite Beams with Flexible Shear Connectors. Journal of Structural Engineering, 118(8), pp.2063-2080. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2063).
Tehami, M. & Ramdane, K.-E. 2009. Creep behaviour modelling of a composite steel-concrete section. Journal of Constructional Steel Research, 65(5), pp.1029-1033. Available at: https://doi.org/10.1016/j.jcsr.2009.01.001.
Wen, C., Lin, Z., Xu, Z., Xu, C., Liu, X. & Yang, G. 2024. Time-dependent response of continuous steel-concrete composite beams under sustained loading. Journal of Constructional Steel Research, 213, art.number: 108339. Available at: https://doi.org/10.1016/j.jcsr.2023.108339.
Xiang, T., Yang, C. & Zhao, G. 2015. Stochastic Creep and Shrinkage Effect of Steel-Concrete Composite Beam. Advances in Structural Engineering, 18(8), pp.1129-1140. Available at: https://doi.org/10.1260/1369-4332.18.8.1129.
Sva prava zadržana (c) 2025 Halima Aouad, Nacer Rahal, Houda Beghdad, Mohamed Sadoun, Abdelaziz Souici, Sara Zatir, Khaled Benmahdi

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).