Effects of shrinkage, temperature and the degree of connection (N/Nf) on the behavior of steel-concrete composite beams

  • Halima Aouad Mustapha Stambouli University, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0004-1999-1489
  • Nacer Rahal Mustapha Stambouli University, Department of Civil Engineering, Mascara, People's Democratic Republic o0f Algeria + University of Sciences and Technology, Laboratory of Mechanical Structure and Construction Stability, Oran, People's Democratic Republic of Algeria https://orcid.org/0009-0002-0400-8360
  • Houda Beghdad Mustapha Stambouli University, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0001-3548-5138
  • Mohamed Sadoun Mustapha Stambouli University, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0008-2314-9402
  • Abdelaziz Souici Mustapha Stambouli University, Department of Civil Engineering, Mascaral, People's Democratic Republic of Algeria + University of Sciences and Technology, Laboratory of Mechanical Structure and Construction Stability, Oran, People's Democratic Republic of Algeria https://orcid.org/0009-0004-3845-7409
  • Sara Zatir University Tahri Mohamed of Bechar, Architecture and Urban Department, Bechar, People's Democratic Republic of Algeria https://orcid.org/0000-0002-6187-3441
  • Khaled Benmahdi Mustapha Stambouli University, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0000-0002-8244-5817
Keywords: degree of connection (N/Nf), shrinkage, time, steel-concrete interface

Abstract


Introduction/purpose: Temperature and time-dependent effects such as concrete shrinkage and creep significantly affect the behavior of steel-concrete composite beams. Hence, taking into account the demands brought by these additional effects is necessary. This necessity has resulted in various theoretical and numerical research studies. This article proposes an analytical tool capable of predicting a new redistribution of stresses brought by the combined action of temperature and concrete shrinkage in composite steel-concrete beams in partial shear connection. In this work, the partial shear connection at the steel-concrete interface is taken into account according to the degree of connection (N/Nf)     

Methods: This involves reformulating the model proposed in 2024 by Rahal et al analyzing the behavior of composite steel-concrete beams in full shear connection under the effect of temperature and concrete shrinkage. In this present study, the main contribution is the introduction of the effect of the connection degree (N/Nf) at the steel-concrete interface, thus leading to an analytical model capable of predicting additional stresses brought by shrinkage and temperature in composite steel-concrete beams in partial shear connection.

Results: When referred to the model proposed in 2024 by Rahal et al, the results from this current approach are satisfactory. They clearly show that the degree of connection significantly affects the forces brought about by the combined action of concrete shrinkage and temperature.

Conclusion: The results of the present approach and those of the existing model developed by Rahal et al are in good agreement. They clearly show the effect of concrete shrinkage and temperature as a function of the connection degree N/Nf on the behavior of composite steel-concrete beams.

 

References

Al-deen, S., Ranzi, G. & Vrcelj, Z. 2011a. Full-scale long-term experiments of simply supported composite beams with solid slabs. Journal of Constructional Steel Research, 67(3), pp.308-321. Available at: https://doi.org/10.1016/j.jcsr.2010.11.001.

Al-deen, S., Ranzi, G & Vrcelj, Z. 2011b. Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck. Journal of Constructional Steel Research, 67(10), pp.1658-1676. Available at: https://doi.org/10.1016/j.jcsr.2011.04.010.

Amadio, C. & Fragiacomo, M. 1997. Simplified Approach to Evaluate Creep and Shrinkage Effects in Steel-Concrete Composite Beams. Journal of Structural Engineering, 123(9), pp.1153-1162. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153).

Beer, G. 2010. Baustatik: Von den Grundlagen bis zur Computerstatik (Textbook Series TU Graz). Verlag d. Technischen Universität Graz. ISBN: 978-3851251210.

Beghdad, H., Tehami, M. & Rahal, N. 2017. Shrinkage behaviour modelling of steel-concrete composite beams with varying degree of connection. Asian Journal of Civil Engineering (BHRC), 18(8), pp.1271-1285 [online]. Available at: https://ajce.bhrc.ac.ir/Volumes-Issues/agentType/View/PropertyID/9500 [Accessed: 02 May 2024].

Bradford, M.A. & Gilbert, R.I. 1991. Time-dependent behaviour of simply-supported steel-concrete composite beams. Magazine of Concrete Research, 43(157), pp.265-274. Available at: https://doi.org/10.1680/macr.1991.43.157.265.

Bradford, M.A. & Gilbert, R.I. 1992. Composite Beams with Partial Interaction under Sustained Loads. Journal of Structural Engineering, 118(7), pp.1871-1883. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1871).

Dias, M.S.F. & Karam, V.J. 2021. Thermal analysis of steel and concrete composite beams cross sections in fire situations. IBRACON Structures and Materials Journal, 14(5), e14509. Available at: https://doi.org/10.1590/S1983-41952021000500009.

-European Standard. 2004. EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings [online]. Available at: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf [Accessed: 02 May 2024].

Faella, C., Martinelli, E. & Nigro, E. 2010. Steel-concrete composite beams in partial interaction: Closed-form ‘‘exact” expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32(9), pp.2744-2754. Available at: https://doi.org/10.1016/j.engstruct.2010.04.044.

Fan, J., Nie, J., Li, Q. & Wang, H. 2010a. Long-Term Behavior of Composite Beams under Positive and Negative Bending. I: Experimental Study. Journal of Structural Engineering, 136(7), pp.849-857. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000175.

Fan, J., Nie, X., Li, Quan & Li, Quanwang. 2010b. Long-Term Behavior of Composite Beams under Positive and Negative Bending. II: Analytical Study. Journal of Structural Engineering, 136(7), pp.858-865. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000176.

Favre, R., Jaccourd, J.-P., Burdet, O. & Charif, H. 1996. Dimensionnement des structures en béton : aptitude au service et éléments de structures. Presses Polytechniques et Universitaires Romandes (PPUR). ISBN: 978-2-88074-330-7.

Gara, F., Ranzi, G. & Leoni, G. 2010. Short- and long-term analytical solutions for composite beams with partial interaction and shear-lag effects. International Journal of Steel Structures, 10(4), pp.359-372. Available at: https://doi.org/10.1007/BF03215844.

Gerhard, E. 1998. Praktische Baustatik, Teil 2. Vieweg+Teubner Verlag Wiesbaden. Available at: https://doi.org/10.1007/978-3-663-11118-4.

Gilbert, R.I. 1989. Time‐Dependent Analysis of Composite Steel‐Concrete Sections. Journal of Structural Engineering, 115(11), pp.2687-2705. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687).

Gilbert. R.I. & Ranzi, G. 2011. Time Dependent Behaviour of Concrete Structures, 1st Edition. CRC Press. Available at: https://doi.org/10.1201/9781482288711.

Hendy, C.R. & Johnson, R.P. 2006. Designers' guide to EN 1994-2 Eurocode 4 : design of composite steel and concrete structures. Part 2, General rules and rules for bridges. London, UK: Thomas Telford Ltd. ISBN: 978-0727731616.

Kumar Mehta, P. & Monteiro, P.J.M. 2005. Concrete: Microstructure, Properties and Materials, Third Edition. ‎ McGraw-Hill Professional. ISBN: 978-0071462891.

Kwak, H.-G & Seo, Y.-J. 2000. Long-term behavior of composite girder bridges. Computer Structures, 74(5), pp.583-599. Available at: https://doi.org/10.1016/S0045-7949(99)00064-4.

Newmark, N.M, Siess, C.P. & Viest, I.M. 1951. Tests and analysis of composite beams with incomplete interaction. Proceedings of the Society for Experimental Stress Analysis, 9(1), pp.75-92.

Nie, J. & Cai, C.S. 2003. Steel–Concrete Composite Beams Considering Shear Slip Effects. Journal of Structural Engineering, 129(4), pp.495-506. Available at: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495).

Partov, D. & Kantchev, V. 2009. Time-dependent analysis of composite steel-concrete beams using integral equation of Volterra, according Eurocode 4. Engineering Mechanics, 16(5), pp.367-392 [online]. Available at: https://web.archive.org/web/20200321071535id_/http://www.engineeringmechanics.cz/pdf/16_5_367.pdf [Accessed: 02 May 2024].

Partov, D. & Kantchev, V. 2011. Level of creep sensitivity in composite steel-concrete beams according to ACI 209R-92 model, comparison with Eurocode-4 (CEB MC90-99). Engineering Mechanics, 18(2), p. 91-116 [online]. Available at: http://147.229.35.49/pdf/18_2_091.pdf [Accessed: 02 May 2024].

Partov, D. & Kantchev, V. 2012. Gardner&Lockman Model (2000) and its Application in Numerical Analysis of Composite Beams. Procedia Engineering, 40, pp.357-362. Available at: https://doi.org/10.1016/j.proeng.2012.07.108.

Partov, D. & Kantchev, V. 2014. Gardner and Lockman Model in Creep Analysis of Composite Steel-Concrete Sections. ACI Structural Journal, 111(1), pp.59-70. Available at: https://doi.org/10.14359/51686430.

Rahal, N., Souici, A., Beghdad, H., Tehami, M., Djaffari, D., Sadoun, M. & Benmahdi, K. 2024. Effects of shrinkage in composite steel-concrete beam subjected to fire. Steel and Composite Structures, 50(4), pp.375-382. Available at: https://doi.org/10.12989/scs.2024.50.4.375.

Rahal, N., Tehami, M., Souici, A. & Beghdad, H. 2012. Applying of Integral Equation of Volterra for Determining the Section Forces in Composite Beam, Regarding Shrinkage of Concrete. Key Engineering Materials, 498, pp.173-186. Available at: https://doi.org/10.4028/www.scientific.net/KEM.498.173.

Ranzi, G. & Bradford, M.A. 2006. Analytical solutions for the time dependent behavior of composite beams with partial interaction. International Journal of Solid and Structures, 43(13), pp.3770-3793. Available at: https://doi.org/10.1016/j.ijsolstr.2005.03.032.

Roll, F. 1971. Effects of Differential Shrinkage and Creep on a Composite Steel-Concrete Structure. ACI Symposium Publication, 27, pp.187-214 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/17182 [Accessed: 02 May 2024].

Sakr, M.A. & Sakla, S.S.S. 2008. Long-term deflection of cracked composite beams with nonlinear partial shear interaction: I — Finite element modeling. Journal of Constructional Steel Research, 64(12), pp.1446-1455. Available at: https://doi.org/10.1016/j.jcsr.2008.01.003.

Souici, A., Tehami, M., Rahal, N., Bekkouche, M.S. & Berthet. J.F. 2015. Creep effect on composite beam with perfect steel-concrete connection. International Journal of Steel Structures, 15(2), pp.433-445. Available at: https://doi.org/10.1007/s13296-015-6013-6.

Szabó, B. 2006. Influence of shear connectors on the elastic behaviour of composite girders. PhD thesis. Otaniemi, Espoo: Helsinki University of Technology [online]. Available at: https://aaltodoc.aalto.fi/items/5856e568-6ec5-4a9e-8232-f2fd69723786 [Accessed: 02 May 2024].

Tarantino, A.M. & Dezi, L. 1992. Creep Effects in Composite Beams with Flexible Shear Connectors. Journal of Structural Engineering, 118(8), pp.2063-2080. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2063).

Tehami, M. & Ramdane, K.-E. 2009. Creep behaviour modelling of a composite steel-concrete section. Journal of Constructional Steel Research, 65(5), pp.1029-1033. Available at: https://doi.org/10.1016/j.jcsr.2009.01.001.

Wen, C., Lin, Z., Xu, Z., Xu, C., Liu, X. & Yang, G. 2024. Time-dependent response of continuous steel-concrete composite beams under sustained loading. Journal of Constructional Steel Research, 213, art.number: 108339. Available at: https://doi.org/10.1016/j.jcsr.2023.108339.

Xiang, T., Yang, C. & Zhao, G. 2015. Stochastic Creep and Shrinkage Effect of Steel-Concrete Composite Beam. Advances in Structural Engineering, 18(8), pp.1129-1140. Available at: https://doi.org/10.1260/1369-4332.18.8.1129.

Published
2025/02/01
Section
Original Scientific Papers