Korozija armaturnog čelika zaštićenog prevlakom legure Zn-Ni u elektrolitima koji simuliraju pore u betonu

Ključne reči: korozija čelične armature, prevlaka Zn-Ni, elektrolit u porama betona, elektrohemijsko taloženje

Sažetak


Uvod/cilj: Antikorozivna zaštita čelične armature u betonu predstavlja ključni izazov u građevinarstvu, naročito u izgradnji betonskih konstrukcija namenjenih za vojne svrhe. Trenutno, najvažnije metode za postizanje ove zaštite uključuju primenu epoksidnih ili toplocinkovanih prevlaka, upotrebu armature od nerđajućeg čelika ili kompozitnih materijala, ili betona koji sadrži inhibitore korozije, površinske zaptivače, silicijumsku prašinu ili dodatak letećeg pepela.

Metode: Ova studija ima za cilj da utvrdi da li prevlaka od legure Zn-Ni odgovarajuće debljine, naneta elektrohemijskim taloženjem, može dati bolju i dugotrajniju otpornost na koroziju armaturnog čelika u betonu, u poređenju sa tradicionalnom prevlakom Zn koja se obično primenjuje u tu svrhu. Nanete prevlake Zn-Ni bile su debljine 40 µm i sadržale su oko 13 mas. % Ni.

Rezultati: Snimanje elektronskim mikroskopom otkrilo je da su prevlake imale glatku i homogenu morfologiju, iako su pokazivale mikropukotine koje su se protezale kroz celu njihovu dubinu. Zaštitna efikasnost prevlake ocenjena je elektrohemijskom impedancijskom spektroskopijom, pri čemu su uzorci bili potopljeni u različite elektrolite koji simuliraju hemijske uslove prisutne u različitim vrstama betona. Merenja su pokazala znatno manju brzinu rastvaranja produkta korozije formiranog na prevlaci Zn-Ni u elektrolitu bogatom hloridima, u poređenju sa čistim Zn.

Zaključak: Može se zaključiti da legura Zn-Ni predstavlja održivu alternativu čistom Zn, za zaštitu čelika u betonskim konstrukcijama gde se očekuje visoka penetracija hlorida.

Reference

-ASTM. 2019. ASTM B841-18: Standard Specification for Electrodeposited Coatings of Zinc Nickel Alloy Deposits, 12 March. Available at: https://doi.org/10.1520/B0841-18.

Bajat, J.B., Maksimović, M.D., Mišković-Stanković, V.B. & Zec, S. 2001. Electrodeposition and characterization of Zn-Ni alloys as sublayers for epoxy coating deposition. Journal of Applied Electrochemistry, 31, pp.355-361. Available at: https://doi.org/10.1023/A:1017580019551.

Bajat, J.B. & Mišković-Stanković, V.B. 2004. Protective properties of epoxy coatings electrodeposited on steel electrochemically modified by Zn–Ni alloys. Progress in Organic Coatings, 49(3), pp.183-196. Available at: https://doi.org/10.1016/j.porgcoat.2003.09.019.

Cao, Z., Kong, G., Che, C. & Wang, Y. 2017. Influence of Nd addition on the corrosion behavior of Zn-5%Al alloy in 3.5 wt.% NaCl solution. Applied Surface Science, 426, pp.67-76. Available at: https://doi.org/10.1016/j.apsusc.2017.07.109.

Dong, S., Zhao, B., Lin, C., Du, R., Hu, R. & Zhang, G.X. 2012. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment. Construction and Building Materials, 28(1), pp.72-78. Available at: https://doi.org/10.1016/j.conbuildmat.2011.08.026.

El-Sayed, A.R., Abd El-Lateef, H.M. & Mohran, H.S. 2015. Effect of nickel content on the anodic dissolution and passivation of zinc–nickel alloys in alkaline solutions by potentiodynamic and potentiostatic techniques. Bulletin of Materials Science, 38, pp.379-391. Available at: https://doi.org/10.1007/s12034-014-0814-7.

El-Sayed, A.R., Mohran, H.S. & Abd El-Lateef, H.M. 2011. Inhibitive action of ferricyanide complex anion on both corrosion and passivation of zinc and zinc–nickel alloy in the alkaline solution. Journal of Power Sources, 196(15), pp.6573-6582. Available at: https://doi.org/10.1016/j.jpowsour.2011.03.057.

Emel’yanov, A.V., Sapunov, S.Yu. & Kudryakov, O.V. 2009. Principles of controlling crystallization kinetics for a multicomponent coating on steel. Metallurgist, 53, pp.648-654. Available at: https://doi.org/10.1007/s11015-010-9228-y.

Farina, S.B. & Duffo, G.S. 2007. Corrosion of zinc in simulated carbonated concrete pore solutions. Electrochimica Acta, 52(16), pp.5131-5139. Available at: https://doi.org/10.1016/j.electacta.2007.01.014.

Hamlaoui, Y., Pedraza, F. & Tifouti, L. 2008. Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy. Corrosion Science, 50(6), pp.1558-1566. Available at: https://doi.org/10.1016/j.corsci.2008.02.010.

Hosseini, M.G., Abdolmaleki, M. & Ashrafpoor, S. 2012. Preparation, characterization, and application of alkaline leached Ni/Zn–Ni binary coatings for electro-oxidation of methanol in alkaline solution. Journal of Applied Electrochemistry, 42, pp.153-162. Available at: https://doi.org/10.1007/s10800-012-0382-8.

Hsu, C.H. & Mansfeld, F. 2001. Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion, 57(9), pp.747-748. Available at: https://doi.org/10.5006/1.3280607.

Kaesche, H. 1964. The passivity of zinc in aqueous solutions of sodium carbonate and sodium bicarbonate. Electrochimica Acta, 9(4), pp.383-394. Available at: https://doi.org/10.1016/0013-4686(64)80044-X.

Kwon, M., Jo, D., Cho, S., Kim, H., Park, J.T. & Park, J.M. 2016. Characterization of the influence of Ni content on the corrosion resistance of electrodeposited Zn–Ni alloy coatings. Surface and Coatings Technology, 288, pp.163-170. Available at: https://doi.org/10.1016/j.surfcoat.2016.01.027.

Moreno, M., Morris, W., Alvarez, M. G. & Duffo, G. S. 2004. Corrosion of reinforcing steel in simulated concrete pore solutions. Effect of carbonation and chloride content. Corrosion Science, 46(11), pp.2681-2699. Available at: https://doi.org/10.1016/j.corsci.2004.03.013.

Mosavat, S.H., Shariat, M.H. & Bahrololoom, M.E. 2012. Study of corrosion performance of electrodeposited nanocrystalline Zn–Ni alloy coatings. Corrosion Science, 59, pp.81-87. Available at: https://doi.org/10.1016/j.corsci.2012.02.012.

Padilla, V. & Alfantazi, A. 2014. Corrosion film breakdown of galvanized steel in sulphate–chloride solutions. Construction and Building Materials, 66, pp.447-457. Available at: https://doi.org/10.1016/j.conbuildmat.2014.05.053.

Qiao, X., Guan, H., Zhou, Z., Song, D. 2024. Research Progress in Corrosion Behavior and Anti-Corrosion Methods of Steel Rebar in Concrete. Metals, 14(8), art.number:862. Available at: https://doi.org/10.3390/met14080862.

Ravindran, V. & Muralidharan, V.S. 2006. Characterization of zinc–nickel alloy electrodeposits obtained from sulphamate bath containing substituted aldehydes. Bulletin of Materials Science, 29, pp.293-301. Available at: https://doi.org/10.1007/BF02706499.

Roventi, G., Bellezze, T., Barbaresi, E. & Fratesi, R. 2013. Effect of carbonation process on the passivating products of zinc in Ca(OH)2 saturated solution. Materials Corrosion, 64(11), pp.1007-1014. Available at: https://doi.org/10.1002/maco.201206868.

Roventi, G., Bellezze, T., Giuliani, G. & Conti, C. 2014. Corrosion resistance of galvanized steel reinforcements in carbonated concrete: effect of wet–dry cycles in tap water and in chloride solution on the passivating layer. Cement and Concrete Research, 65, pp.76-84. Available at: https://doi.org/10.1016/j.cemconres.2014.07.014.

Short, N.R., Zhou, S. & Dennis, J.K. 1996. Electrochemical studies on the corrosion of a range of zinc alloy coated steel in alkaline solutions. Surface and Coatings Technology, 79(1-3), pp.218-224. Available at: https://doi.org/10.1016/0257-8972(95)02428-X.

Sistonen, E., Cwirzen, A. & Puttonen, J. 2008. Corrosion mechanism of hot-dip galvanised reinforcement bar in cracked concrete. Corrosion Science, 50(12), pp.3416-3428. Available at: https://doi.org/10.1016/j.corsci.2008.08.050.

Sriraman, K., Brahimi, S., Szpunar, J., Osborne, J. & Yue, S. 2013. Characterization of corrosion resistance of electrodeposited Zn–Ni Zn and Cd coatings. Electrochimica Acta, 105, pp.314-323. Available at: https://doi.org/10.1016/j.electacta.2013.05.010.

Tan, Z.Q. & Hansson, C.M. 2008. Effect of surface condition on the initial corrosion of galvanized reinforcing steel embedded in concrete. Corrosion Science, 50(9), pp.2512-2522. Available at: https://doi.org/10.1016/j.corsci.2008.06.035.

Tian, W., Xie, F.Q., Wu, X.Q. & Yang, Z.Z. 2009. Study on corrosion resistance of electroplating zinc–nickel alloy coatings. Surface and Interface Analysis, 41(3), pp.251-254. Available at: https://doi.org/10.1002/sia.3017.

Wang, Y.-q., Kong, G., Che, C.-s. 2019. Corrosion Behavior of Zn-Al, Zn-Mg, and Zn-Mg-Al coatings in simulated concrete pore solution. Corrosion, 75(2), pp.203-209. Available at: https://doi.org/10.5006/3029.

Wilcox, G.D. & Gabe, D.R. 1993. Electrodeposited zinc alloy coatings. Corrosion Science, 35(5-8), pp.1251-1258. Available at: https://doi.org/10.1016/0010-938X(93)90345-H.

Wu, P.-p., Zhang, Z.-z., Xu, F.-j., Deng, K., Nie, K.-b. & Gao, R. 2017. Effect of duty cycle on preparation and corrosion behavior of electrodeposited calcium phosphate coatings on AZ91. Applied Surface Science, 426, pp.418-426. Available at: https://doi.org/10.1016/j.apsusc.2017.07.111.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi