Uticaj izdrobljenog krečnjačkog peska i praha na mehaničko ponašanje mešavina rečnog peska: eksperimentalna studija

Ključne reči: rečni pesak, izdrobljeni krečnjački pesak, prah izdrobljenog krečnjačkog peska, supstitucija, čvrstoća smicanja, održivi razvoj

Sažetak


Uvod/cilj: Cilj ove studije jeste da ispita uticaj izdrobljenog krečnjačkog peska (crushed limestone sand –CLS) i krečnjačkog praha (limestone crushed sand dust – LCSD) na fizičko i mehaničko ponašanje rekonstituisanog rečnog peska pomoću metode volumetrijske supstitucije.

Metode: U studiji su izvedeni testovi direktnog smicanja na dve serije supstitucije kako bi se procenio efekat peska CLS sa povećanjima u inkrementima od 0, 10, 20, 30, i 40%, kao i efekat praha LCSD od 0 do 35% u koracima od 5% na mehaničko ponašanje rekonstituisanog rečnog peska. Svi uzorci su pripremljeni sa 50% relativne gustine i testirani pod tri različita normalna napona, tj. pod naponima od 100, 200 i 300 kPa.

Rezultati: Rezultati pokazuju da zamena rečnog peska izdrobljenim krečnjačkim peskom povećava njegova mehanička svojstva do 30%. Čvrstoća smicanja dostigla je maksimalnu vrednost od 29% pod normalnim naponom od 200 kPa. Zamena rečnog peska prahom izdrobljenog krečnjačkog peska dovodi do smanjivanja mehaničkih svojstava. Međutim, detaljnija analiza dobijenih rezultata otkriva poboljšanje u rezidualnim parametrima do 15% supstitucije.

Zaključak: Nakon rigorozne analize dobijenih rezultata, utvrđeno je da pesak rekonstituisan kombinacijom 30% izdrobljenog krečnjačkog peska i 15% krečnjačkog praha nudi optimalne performanse kada je reč o poboljšanim mehaničkim svojstvima. Ovo rešenje u velikoj meri odgovara održivom razvoju strategije alžirske vlade jer promoviše poboljšane karakteristike i očuvanje prirodnih resursa, dok u isto vreme ispunjava stroge zahteve geotehaničkog sektora.

Reference

-AFNOR. 1991. NF-P94-054: Sols: reconnaissance et essais–Détermination de la masse volumique des particules solides des sols–Méthode du pycnomètre à eau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94054/sols-reconnaissance-et-essais-determination-de-la-masse-volumique-des-parti/fa020767/11077 [Accessed: 19 January 2025].

-AFNOR. 1992. NF P94-057: Soils investingation and testing. Granulometric analysis. Hydrometer method [online]. Available at: https://www.boutique.afnor.org/en-gb/standard/nf-p94057/soils-investingation-and-testing-granulometric-analysis-hydrometer-method/fa020768/11074 [Accessed: 19 January 2025].

-AFNOR. 1994. NF-P94-071-1: Soil investigation and testing. Direct shear test with shearbox apparatus. Part 1: direct shear [online]. Available at: https://www.boutique.afnor.org/en-gb/standard/nf-p940711/soil-investigation-and-testing-direct-shear-test-with-shearbox-apparatus-pa/fa029769/11060 [Accessed: 19 January 2025].

-AFNOR. 1996. NF-P94‐056: Sols: reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94056/sols-reconnaissance-et-essais-analyse-granulometrique-methode-par-tamisage-/fa026936/11075 [Accessed: 19 January 2025].

-AFNOR. 2000. NF-P94-059: Sols: reconnaissance et essais - Détermination des masses volumiques minimale et maximale des sols non cohérents [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94059/sols-reconnaissance-et-essais-determination-des-masses-volumiques-minimale-/fa106659/17780 [Accessed: 19 January 2025].

Abbireddy, C.O.R. & Clayton, C.R.I. 2015. The impact of particle form on the packing and shear behaviour of some granular materials: an experimental study. Granular Matter, 17, pp.427-438. Available at: https://doi.org/10.1007/s10035-015-0566-0.

Abbou, M., Semcha, A. & Kazi-Aoual, F. 2020. Stabilization of compressed earth block clayey materials from Adrar (Algeria) by lime and crushed sand. Journal of Building Materials and Structures, 7(1), pp.42-50. Available at: https://doi.org/10.34118/jbms.v7i1.137.

Altuhafi, F.N., Coop, M.R. & Georgiannou, V.N. 2016. Effect of Particle Shape on the Mechanical Behavior of Natural Sands. Journal of Geotechnical and Geoenvironmental Engineering, 142(12). Available at: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.

Aouali, N., Benessalah, I., Arab, A., Ali, B. & Abed, M. 2019. Shear Strength Response of Fibre Reinforced Chlef (Algeria) Silty Sand: Laboratory Study. Geotechnical and Geological Engineering, 37(2), pp.1047-1057. Available at: https://doi.org/10.1007/s10706-018-0641-5.

Arab, A., Hamoudi, S., Shahrour, I. & Lancelot, L. 2008. Influence of fines fraction on the behaviour of a silty sand. Revue Française de Géotechnique, 122, pp.37-43. Available at: https://doi.org/10.1051/geotech/2008122037.

Been, K. & Jefferies, M.G. 1985. A state parameter for sands. Géotechnique, 35(2), pp.99-112. Available at: https://doi.org/10.1680/geot.1985.35.2.99.

Belkhatir, M., Arab, A., Della, N., Missoum, H. & Schanz, T. 2010. Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes Rendus. Mécanique, 338(5), pp.290-303. Available at: https://doi.org/10.1016/j.crme.2010.04.002.

Belkhatir, M., Arab, A., Schanz, T., Missoum, H., Della, N. 2011. Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter, 13(5), pp.599-609. Available at: https://doi.org/10.1007/s10035-011-0269-0.

Benessalah, I., Arab, A. & Meziane, E.-H. 2021. Intergranular void ratio and undrained monotonic behavior of Chlef sand containing low plastic fines. Acta Mechanica, 232(4), pp.1621-1640. Available at: https://doi.org/10.1007/s00707-020-02923-0.

Bolton, M. 1986. The strength and dilatancy of sands. Geotechnique, 36(1), pp.65-78. Available at: https://doi.org/10.1680/geot.1986.36.1.65.

Borhani, A. & Fakharian, K. 2016. Effect of Particle Shape on Dilative Behavior and Stress Path Characteristics of Chamkhaleh Sand in Undrained Triaxial Tests. International Journal of Civil Engineering, 14, pp.197-208. Available at: https://doi.org/10.1007/s40999-016-0048-8.

Bouri, D., Krim, A., Brahim, A. & Arab, A. 2019. Shear strength of compacted Chlef sand: effect of water content, fines content and others parameters. Studia Geotechnica et Mechanica, 42(1), pp.18-35. Available at: https://doi.org/10.2478/sgem-2019-0027.

Brooks, R., Udoeyo, F.F. & Takkalapelli, K.V. 2011. Geotechnical Properties of Problem Soils Stabilized with Fly Ash and Limestone Dust in Philadelphia. Journal of Materials in Civil Engineering, 23(5), pp.711-716. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214.

Cabalar, A.F. & Omar, R.A. 2023. Stabilizing a silt using waste limestone powder. Bulletin of Engineering Geology and the Environment, 82(8), art.number:300. Available at: https://doi.org/10.1007/s10064-023-03302-4.

Cherif Taiba, A., Mahmoudi, Y., Belkhatir, M. & Schanz, T. 2018. Experimental Investigation into the Influence of Roundness and Sphericity on the Undrained Shear Response of Silty Sand Soils. Geotechnical Testing Journal, 41(3), pp. 619-633. Available at: https://doi.org/10.1520/GTJ20170118.

Cho, G.-C., Dodds, J. & Santamarina, J.C. 2006. Particle Shape Effects on Packing Density, Stiffness, and strength Natural and Crushed sands. Geotechnical and Geoenvironmental Engineering, 132(5), pp.591-602. Available at: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).

Cubrinovski, M. & Ishihara, K. 2002. Maximum and Minimum Void Ratio Characteristics of Sands. Soils and Foundations, 42(6), pp.65-78. Available at: https://doi.org/10.3208/sandf.42.6_65.

Daghistani, F. & Abuel-Naga, H. 2023. Evaluating the Influence of Sand Particle Morphology on Shear Strength: A Comparison of Experimental and Machine Learning Approaches. Applied Sciences, 13(14), art.number:8160. Available at: https://doi.org/10.3390/app13148160.

Ezziane, M., Henni, A.D., Denine, S., Benyahia, B.A. & Boumezerane, D. 2025. Effect of silt fines on the undrained monotonic behavior of compacted tuff soil. Arabian Journal of Geosciences, 18(1), art.number:9. Available at: https://doi.org/10.1007/s12517-024-12149-2.

Gilbert, R.B. & Byrne, R.J. 1996. Strain-Softening Behavior of Waste Containment System Interfaces. Geosynthetics International, 3(2), pp.181-203. Available at: https://doi.org/10.1680/gein.3.0059.

Gong, J., Nie, Z., Zhu, Y., Liang, Z. & Wang, X. 2019. Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM. Computers and Geotechnics, 106, pp.161-176. Available at: https://doi.org/10.1016/j.compgeo.2018.10.021.

Guemmadi, Z. & Houari, H. 2009. Utilizing crushed limestone fine wastes in Algeria as fillers in cement. Sciences & Technologie. B, Sciences de l'ingénieur, 29, pp.17-22 [online]. Available at: https://revue.umc.edu.dz/b/article/view/252 [Accessed: 19 January 2025].

Guo, P. & Su, X. 2007. Shear strength, interparticle locking, and dilatancy of granular materials. Canadian Geotechnical Journal, 44(5), pp.579-591. Available at: https://doi.org/10.1139/t07-010.

Hamidi, A., Yazdanjou, V. & Salimi, N. 2009. Shear strength characteristics of sand-gravel mixtures. International Journal of Geotechnical Engineering, 3(1), pp.29-38. Available at: https://doi.org/10.3328/IJGE.2009.03.01.29-38.

Holtz, R.D., Kovacs, W.D. & Sheahan, T.C. 2022. An Introduction to Geotechnical Engineering, 3rd edition. Pearson. ISBN: 9780135619254.

Holtz, W.G. & Gibbs, H.J. 1956. Engineering Properties of Expansive Clays. Transactions of the American Society of Civil Engineers, 121(1), pp.641-663. Available at: https://doi.org/10.1061/TACEAT.0007325.

Ibrahim, H.H., Alshkane, Y.M., Mawlood, Y.I., Noori, K.M.G. & Hasan, A.M. 2020. Improving the geotechnical properties of high expansive clay using limestone powder. Innovative Infrastructure Solutions, 5(3), art.number :112. Available at: https://doi.org/10.1007/s41062-020-00366-z.

Igwe, O. 2018. The Combined Effect of Particle Size Distribution and Relative Density on the Large Strain Behavior of Sandy Soils. Geotechnical and Geological Engineering, 36(2), pp.1037-1048. Available at: https://doi.org/10.1007/s10706-017-0372-z.

Ishihara, K. 1996. Soil Behaviour in Earthquake Geotechnics. Oxford Academic. Available at: https://doi.org/10.1093/oso/9780198562245.001.0001.

Kandasami, R.K. & Murthy, T.G. 2017. Manifestation of particle morphology on the mechanical behaviour of granular ensembles. Granular Matter, 19, art.number:21. Available at: https://doi.org/10.1007/s10035-017-0703-z.

Lade, P.V. & Yamamuro, J.A. 1997. Effects of non-plastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34(6), pp.918-928. Available at: https://doi.org/10.1139/t97-052.

Li, X., Liu, J. & Sun, Z. 2023. Shear strength-dilation characteristics of coral sand contained fines. Bulletin of Engineering Geology and the Environment, 82(9), art.number:349. Available at: https://doi.org/10.1007/s10064-023-03349-3.

LI, Y. 2013. Effects of particle shape and size distribution on the shear strength behavior of composite soils. Bulletin of Engineering Geology and the Environment, 72, pp.371-381. Available at: https://doi.org/10.1007/s10064-013-0482-7.

Liu, Y., Liu, X. & Hu, W. 2023. Competition mechanism between dilation and interlocking in granular soils: DEM simulation and constitutive modeling. Acta Geotechnica, 18(1), pp.149-169. Available at: https://doi.org/10.1007/s11440-022-01552-2.

Logbi, A., Mani, M., Choungara, T. & Kriker, A. 2023. Comparative study of the effect of crushed dune sand and limestone fillers on mortar properties in aggressive environment. World Journal of Engineering, 20(1), pp.85-92. Available at: https://doi.org/10.1108/WJE-09-2020-0437.

Lu, Z., Yao, A., Su, A., Ren, X., Liu, Q. & Dong, S. 2019. Re-recognizing the impact of particle shape on physical and mechanical properties of sandy soils: A numerical study. Engineering Geology, 253, pp.36-46. Available at: https://doi.org/10.1016/j.enggeo.2019.03.011.

Monkul, M.M., Etminan, E. & Şenol, A. 2016. Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt. Soil Dynamics and Earthquake Engineering, 89, pp.185-197. Available at: https://doi.org/10.1016/j.soildyn.2016.08.001.

Monkul, M.M., Etminan, E. & Senol, A. 2017. Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands. Soil Dynamics and Earthquake Engineering, 101, pp.12-26. Available at: https://doi.org/10.1016/j.soildyn.2017.06.023.

Monkul, M.M. & Ozden, G. 2007. Compressional behavior of clayey sand and transition fines content. Engineering Geology, 89(3-4), pp.195-205. Available at: https://doi.org/10.1016/j.enggeo.2006.10.001.

Nafisi, A., Khoubani, A., Montoya, B.M. & Evans, M. 2018. The effect of grain size and shape on mechanical behavior of MICP sand I: experimental study. In: Proceedings of the 11th National Conference on Earthquake Engineering, Los Angeles, CA, USA, June 25-29. Earthquake Engineering Research Institute (EERI). ISBN: 9781510873254.

Najjar, S., Yaghi, K., Adwan, M. & Jaoude, A. 2015. Drained shear strength of compacted sand with clayey fines. International Journal of Geotechnical Engineering, 9(5), pp.513-520. Available at: https://doi.org/10.1179/1939787915Y.0000000001.

Nguyen, H.B.K., Rahman, M.M. & Fourie, A.B. 2021. How particle shape affects the critical state, triggering of instability and dilatancy of granular materials–results from a DEM study. Géotechnique, 71(9), pp.749-764. Available at: https://doi.org/10.1680/jgeot.18.P.211.

Nie, J., Zhao, S., Cui, Y. & Wang, Y. 2022. Coupled effects of particle overall regularity and sliding friction on the shear behavior of uniformly graded dense sands. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), pp.873-885. Available at: https://doi.org/10.1016/j.jrmge.2021.10.014.

Nougar, B., Brahimi, A., Bouri, D.E., Arab, A. & Benessalah, I. 2021. Laboratory Investigation into the Effect of Fines Plasticity on the Mechanical Behavior of Sand/Fines Mixtures. Transportation Infrastructure Geotechnology, 8(3), pp.438-451. Available at: https://doi.org/10.1007/s40515-020-00144-5.

Ouici, A.A., Taiba, A.C., Mahmoudi, Y. & Belkhatir, M. 2024. Influence of fines and gravel particles on strength-dilatancy of river sand: Effect of depositional conditions. Marine Georesources & Geotechnology, pp.1-15. Available at: https://doi.org/10.1080/1064119X.2024.2409411.

Sabat, A.K. & Muni, P.K. 2015. Effects of Limestone Dust on Geotechnical Properties of an Expansive Soil. International Journal of Applied Engineering Research, 10(17), pp.377724-37730.

Safiddine, S., Amokrane, K., Debieb, F., Soualhi, H., Benabed, B. & Kadri, E.-H. 2021. How quarry waste limestone filler affects the rheological behavior of cement-based materials. Applied Rheology, 31, pp.63-75. Available at: https://doi.org/10.1515/arh-2020-0118.

Safiddine, S., Debieb, F., Kadri, E.-H., Menadi, B. & Soualhi, H. 2017. Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar. Applied Rheology, 27(1), pp.12-20. Available at: https://doi.org/10.3933/applrheol-27-14490.

Santamarina, J.C. & Cho, G.C. 2001. Determination of Critical State Parameters in Sandy Soils—Simple Procedure. Geotechnical Testing Journal, 24(2), pp.185-192. Available at: https://doi.org/10.1520/GTJ11338J.

Schanz, T. & Vermeer, P. 1996. Angles of friction and dilatancy of sand. Géotechnique, 46(1), pp.145-151. Available at: https://doi.org/10.1680/geot.1996.46.1.145.

Schanz, T., Vermeer, P.A. & Bonnier, P.G. 1999. The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics, 1st Edition. Routledge [online]. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315138206-27/hardening-soil-model-formulation-verification-schanz-vermeer-bonnier [Accessed: 19 January 2025]. ISBN: 9781315138206

Shabong, R.A., Sonowal, A.J., Pukhrambam, A., Das, R., Anand, A., Bobing, S. & Deka, S. 2023. An experimental study on the effect of particle size and non-homogeneity on the shear strength of soil. In: IOP Conference Series: Materials Science and Engineering, Volume 1282, 3rd International Conference on Sustainable Construction Technologies & Advancements in Civil Engineering. (ScTACE 2022), Bhimavaram, India, art.number:012021, December 15-17. Available at: https://doi.org/10.1088/1757-899X/1282/1/012021.

Shen, J., Wang, X., Wang, X., Yao, T., Wei, H. & Zhu, C. 2021. Effect and mechanism of fines content on the shear strength of calcareous sand. Bulletin of Engineering Geology and the Environment, 80, pp.7899-7919. Available at: https://doi.org/10.1007/s10064-021-02398-w.

Shi, Y., Li, S., Zhang, T., Liu, J. & Zhang, J. 2024. Compaction and shear performance of lime-modified high moisture content silty clay. Case Studies in Construction Materials, 21, e03529. Available at: https://doi.org/10.1016/j.cscm.2024.e03529.

Skender, Z., Bali, A. & Kettab, R. 2021. Self-compacting concrete (SCC) behaviour incorporating limestone fines as cement and sand replacement. European Journal of Environmental and Civil Engineering, 25(10), pp.1852-1873. Available at: https://doi.org/10.1080/19648189.2019.1607564.

Thevanayagam, S., Shenthan, T., Mohan, S. & Liang, J. 2002. Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silts. Journal of Geotechnical and Geoenvironmental Engineering, 128(10), pp.849-859. Available at: https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).

Vallejo, L.E. 2001. Interpretation of the limits in shear strength in binary granular mixtures. Canadian Geotechnical Journal, 38(5), pp.1097-1104. Available at: https://doi.org/10.1139/t01-029.

Xiao, Y., Liu, H., Chen, Q., Long, L. & Xiang, J. 2017. Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granular Matter, 19, art.number:71. Available at: https://doi.org/10.1007/s10035-017-0756-z.

Yang, J. & Wei, L.M. 2014. Static Liquefaction of Granular Soils: The Role of Grain Shape and Size. In: Chau, KT. & Zhao, J. (Eds.) Bifurcation and Degradation of Geomaterials in the New Millennium. IWBDG 2014. Springer Series in Geomechanics and Geoengineering, pp.199-205. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-13506-9_29.

Youd, T.L. 1973. Factors Controlling Maximum and Minimum Densities of Sands. In: Selig, E.T. & Ladd, R.S. (Eds.) Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils, pp.98-112. ASTM International. Available at: https://doi.org/10.1520/STP37866S.

Objavljeno
2025/03/28
Rubrika
Originalni naučni radovi