Uticaj izdrobljenog krečnjačkog peska i praha na mehaničko ponašanje mešavina rečnog peska: eksperimentalna studija
Sažetak
Uvod/cilj: Cilj ove studije jeste da ispita uticaj izdrobljenog krečnjačkog peska (crushed limestone sand –CLS) i krečnjačkog praha (limestone crushed sand dust – LCSD) na fizičko i mehaničko ponašanje rekonstituisanog rečnog peska pomoću metode volumetrijske supstitucije.
Metode: U studiji su izvedeni testovi direktnog smicanja na dve serije supstitucije kako bi se procenio efekat peska CLS sa povećanjima u inkrementima od 0, 10, 20, 30, i 40%, kao i efekat praha LCSD od 0 do 35% u koracima od 5% na mehaničko ponašanje rekonstituisanog rečnog peska. Svi uzorci su pripremljeni sa 50% relativne gustine i testirani pod tri različita normalna napona, tj. pod naponima od 100, 200 i 300 kPa.
Rezultati: Rezultati pokazuju da zamena rečnog peska izdrobljenim krečnjačkim peskom povećava njegova mehanička svojstva do 30%. Čvrstoća smicanja dostigla je maksimalnu vrednost od 29% pod normalnim naponom od 200 kPa. Zamena rečnog peska prahom izdrobljenog krečnjačkog peska dovodi do smanjivanja mehaničkih svojstava. Međutim, detaljnija analiza dobijenih rezultata otkriva poboljšanje u rezidualnim parametrima do 15% supstitucije.
Zaključak: Nakon rigorozne analize dobijenih rezultata, utvrđeno je da pesak rekonstituisan kombinacijom 30% izdrobljenog krečnjačkog peska i 15% krečnjačkog praha nudi optimalne performanse kada je reč o poboljšanim mehaničkim svojstvima. Ovo rešenje u velikoj meri odgovara održivom razvoju strategije alžirske vlade jer promoviše poboljšane karakteristike i očuvanje prirodnih resursa, dok u isto vreme ispunjava stroge zahteve geotehaničkog sektora.
Reference
-AFNOR. 1991. NF-P94-054: Sols: reconnaissance et essais–Détermination de la masse volumique des particules solides des sols–Méthode du pycnomètre à eau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94054/sols-reconnaissance-et-essais-determination-de-la-masse-volumique-des-parti/fa020767/11077 [Accessed: 19 January 2025].
-AFNOR. 1992. NF P94-057: Soils investingation and testing. Granulometric analysis. Hydrometer method [online]. Available at: https://www.boutique.afnor.org/en-gb/standard/nf-p94057/soils-investingation-and-testing-granulometric-analysis-hydrometer-method/fa020768/11074 [Accessed: 19 January 2025].
-AFNOR. 1994. NF-P94-071-1: Soil investigation and testing. Direct shear test with shearbox apparatus. Part 1: direct shear [online]. Available at: https://www.boutique.afnor.org/en-gb/standard/nf-p940711/soil-investigation-and-testing-direct-shear-test-with-shearbox-apparatus-pa/fa029769/11060 [Accessed: 19 January 2025].
-AFNOR. 1996. NF-P94‐056: Sols: reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94056/sols-reconnaissance-et-essais-analyse-granulometrique-methode-par-tamisage-/fa026936/11075 [Accessed: 19 January 2025].
-AFNOR. 2000. NF-P94-059: Sols: reconnaissance et essais - Détermination des masses volumiques minimale et maximale des sols non cohérents [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94059/sols-reconnaissance-et-essais-determination-des-masses-volumiques-minimale-/fa106659/17780 [Accessed: 19 January 2025].
Abbireddy, C.O.R. & Clayton, C.R.I. 2015. The impact of particle form on the packing and shear behaviour of some granular materials: an experimental study. Granular Matter, 17, pp.427-438. Available at: https://doi.org/10.1007/s10035-015-0566-0.
Abbou, M., Semcha, A. & Kazi-Aoual, F. 2020. Stabilization of compressed earth block clayey materials from Adrar (Algeria) by lime and crushed sand. Journal of Building Materials and Structures, 7(1), pp.42-50. Available at: https://doi.org/10.34118/jbms.v7i1.137.
Altuhafi, F.N., Coop, M.R. & Georgiannou, V.N. 2016. Effect of Particle Shape on the Mechanical Behavior of Natural Sands. Journal of Geotechnical and Geoenvironmental Engineering, 142(12). Available at: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
Aouali, N., Benessalah, I., Arab, A., Ali, B. & Abed, M. 2019. Shear Strength Response of Fibre Reinforced Chlef (Algeria) Silty Sand: Laboratory Study. Geotechnical and Geological Engineering, 37(2), pp.1047-1057. Available at: https://doi.org/10.1007/s10706-018-0641-5.
Arab, A., Hamoudi, S., Shahrour, I. & Lancelot, L. 2008. Influence of fines fraction on the behaviour of a silty sand. Revue Française de Géotechnique, 122, pp.37-43. Available at: https://doi.org/10.1051/geotech/2008122037.
Been, K. & Jefferies, M.G. 1985. A state parameter for sands. Géotechnique, 35(2), pp.99-112. Available at: https://doi.org/10.1680/geot.1985.35.2.99.
Belkhatir, M., Arab, A., Della, N., Missoum, H. & Schanz, T. 2010. Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes Rendus. Mécanique, 338(5), pp.290-303. Available at: https://doi.org/10.1016/j.crme.2010.04.002.
Belkhatir, M., Arab, A., Schanz, T., Missoum, H., Della, N. 2011. Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter, 13(5), pp.599-609. Available at: https://doi.org/10.1007/s10035-011-0269-0.
Benessalah, I., Arab, A. & Meziane, E.-H. 2021. Intergranular void ratio and undrained monotonic behavior of Chlef sand containing low plastic fines. Acta Mechanica, 232(4), pp.1621-1640. Available at: https://doi.org/10.1007/s00707-020-02923-0.
Bolton, M. 1986. The strength and dilatancy of sands. Geotechnique, 36(1), pp.65-78. Available at: https://doi.org/10.1680/geot.1986.36.1.65.
Borhani, A. & Fakharian, K. 2016. Effect of Particle Shape on Dilative Behavior and Stress Path Characteristics of Chamkhaleh Sand in Undrained Triaxial Tests. International Journal of Civil Engineering, 14, pp.197-208. Available at: https://doi.org/10.1007/s40999-016-0048-8.
Bouri, D., Krim, A., Brahim, A. & Arab, A. 2019. Shear strength of compacted Chlef sand: effect of water content, fines content and others parameters. Studia Geotechnica et Mechanica, 42(1), pp.18-35. Available at: https://doi.org/10.2478/sgem-2019-0027.
Brooks, R., Udoeyo, F.F. & Takkalapelli, K.V. 2011. Geotechnical Properties of Problem Soils Stabilized with Fly Ash and Limestone Dust in Philadelphia. Journal of Materials in Civil Engineering, 23(5), pp.711-716. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214.
Cabalar, A.F. & Omar, R.A. 2023. Stabilizing a silt using waste limestone powder. Bulletin of Engineering Geology and the Environment, 82(8), art.number:300. Available at: https://doi.org/10.1007/s10064-023-03302-4.
Cherif Taiba, A., Mahmoudi, Y., Belkhatir, M. & Schanz, T. 2018. Experimental Investigation into the Influence of Roundness and Sphericity on the Undrained Shear Response of Silty Sand Soils. Geotechnical Testing Journal, 41(3), pp. 619-633. Available at: https://doi.org/10.1520/GTJ20170118.
Cho, G.-C., Dodds, J. & Santamarina, J.C. 2006. Particle Shape Effects on Packing Density, Stiffness, and strength Natural and Crushed sands. Geotechnical and Geoenvironmental Engineering, 132(5), pp.591-602. Available at: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Cubrinovski, M. & Ishihara, K. 2002. Maximum and Minimum Void Ratio Characteristics of Sands. Soils and Foundations, 42(6), pp.65-78. Available at: https://doi.org/10.3208/sandf.42.6_65.
Daghistani, F. & Abuel-Naga, H. 2023. Evaluating the Influence of Sand Particle Morphology on Shear Strength: A Comparison of Experimental and Machine Learning Approaches. Applied Sciences, 13(14), art.number:8160. Available at: https://doi.org/10.3390/app13148160.
Ezziane, M., Henni, A.D., Denine, S., Benyahia, B.A. & Boumezerane, D. 2025. Effect of silt fines on the undrained monotonic behavior of compacted tuff soil. Arabian Journal of Geosciences, 18(1), art.number:9. Available at: https://doi.org/10.1007/s12517-024-12149-2.
Gilbert, R.B. & Byrne, R.J. 1996. Strain-Softening Behavior of Waste Containment System Interfaces. Geosynthetics International, 3(2), pp.181-203. Available at: https://doi.org/10.1680/gein.3.0059.
Gong, J., Nie, Z., Zhu, Y., Liang, Z. & Wang, X. 2019. Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM. Computers and Geotechnics, 106, pp.161-176. Available at: https://doi.org/10.1016/j.compgeo.2018.10.021.
Guemmadi, Z. & Houari, H. 2009. Utilizing crushed limestone fine wastes in Algeria as fillers in cement. Sciences & Technologie. B, Sciences de l'ingénieur, 29, pp.17-22 [online]. Available at: https://revue.umc.edu.dz/b/article/view/252 [Accessed: 19 January 2025].
Guo, P. & Su, X. 2007. Shear strength, interparticle locking, and dilatancy of granular materials. Canadian Geotechnical Journal, 44(5), pp.579-591. Available at: https://doi.org/10.1139/t07-010.
Hamidi, A., Yazdanjou, V. & Salimi, N. 2009. Shear strength characteristics of sand-gravel mixtures. International Journal of Geotechnical Engineering, 3(1), pp.29-38. Available at: https://doi.org/10.3328/IJGE.2009.03.01.29-38.
Holtz, R.D., Kovacs, W.D. & Sheahan, T.C. 2022. An Introduction to Geotechnical Engineering, 3rd edition. Pearson. ISBN: 9780135619254.
Holtz, W.G. & Gibbs, H.J. 1956. Engineering Properties of Expansive Clays. Transactions of the American Society of Civil Engineers, 121(1), pp.641-663. Available at: https://doi.org/10.1061/TACEAT.0007325.
Ibrahim, H.H., Alshkane, Y.M., Mawlood, Y.I., Noori, K.M.G. & Hasan, A.M. 2020. Improving the geotechnical properties of high expansive clay using limestone powder. Innovative Infrastructure Solutions, 5(3), art.number :112. Available at: https://doi.org/10.1007/s41062-020-00366-z.
Igwe, O. 2018. The Combined Effect of Particle Size Distribution and Relative Density on the Large Strain Behavior of Sandy Soils. Geotechnical and Geological Engineering, 36(2), pp.1037-1048. Available at: https://doi.org/10.1007/s10706-017-0372-z.
Ishihara, K. 1996. Soil Behaviour in Earthquake Geotechnics. Oxford Academic. Available at: https://doi.org/10.1093/oso/9780198562245.001.0001.
Kandasami, R.K. & Murthy, T.G. 2017. Manifestation of particle morphology on the mechanical behaviour of granular ensembles. Granular Matter, 19, art.number:21. Available at: https://doi.org/10.1007/s10035-017-0703-z.
Lade, P.V. & Yamamuro, J.A. 1997. Effects of non-plastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34(6), pp.918-928. Available at: https://doi.org/10.1139/t97-052.
Li, X., Liu, J. & Sun, Z. 2023. Shear strength-dilation characteristics of coral sand contained fines. Bulletin of Engineering Geology and the Environment, 82(9), art.number:349. Available at: https://doi.org/10.1007/s10064-023-03349-3.
LI, Y. 2013. Effects of particle shape and size distribution on the shear strength behavior of composite soils. Bulletin of Engineering Geology and the Environment, 72, pp.371-381. Available at: https://doi.org/10.1007/s10064-013-0482-7.
Liu, Y., Liu, X. & Hu, W. 2023. Competition mechanism between dilation and interlocking in granular soils: DEM simulation and constitutive modeling. Acta Geotechnica, 18(1), pp.149-169. Available at: https://doi.org/10.1007/s11440-022-01552-2.
Logbi, A., Mani, M., Choungara, T. & Kriker, A. 2023. Comparative study of the effect of crushed dune sand and limestone fillers on mortar properties in aggressive environment. World Journal of Engineering, 20(1), pp.85-92. Available at: https://doi.org/10.1108/WJE-09-2020-0437.
Lu, Z., Yao, A., Su, A., Ren, X., Liu, Q. & Dong, S. 2019. Re-recognizing the impact of particle shape on physical and mechanical properties of sandy soils: A numerical study. Engineering Geology, 253, pp.36-46. Available at: https://doi.org/10.1016/j.enggeo.2019.03.011.
Monkul, M.M., Etminan, E. & Şenol, A. 2016. Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt. Soil Dynamics and Earthquake Engineering, 89, pp.185-197. Available at: https://doi.org/10.1016/j.soildyn.2016.08.001.
Monkul, M.M., Etminan, E. & Senol, A. 2017. Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands. Soil Dynamics and Earthquake Engineering, 101, pp.12-26. Available at: https://doi.org/10.1016/j.soildyn.2017.06.023.
Monkul, M.M. & Ozden, G. 2007. Compressional behavior of clayey sand and transition fines content. Engineering Geology, 89(3-4), pp.195-205. Available at: https://doi.org/10.1016/j.enggeo.2006.10.001.
Nafisi, A., Khoubani, A., Montoya, B.M. & Evans, M. 2018. The effect of grain size and shape on mechanical behavior of MICP sand I: experimental study. In: Proceedings of the 11th National Conference on Earthquake Engineering, Los Angeles, CA, USA, June 25-29. Earthquake Engineering Research Institute (EERI). ISBN: 9781510873254.
Najjar, S., Yaghi, K., Adwan, M. & Jaoude, A. 2015. Drained shear strength of compacted sand with clayey fines. International Journal of Geotechnical Engineering, 9(5), pp.513-520. Available at: https://doi.org/10.1179/1939787915Y.0000000001.
Nguyen, H.B.K., Rahman, M.M. & Fourie, A.B. 2021. How particle shape affects the critical state, triggering of instability and dilatancy of granular materials–results from a DEM study. Géotechnique, 71(9), pp.749-764. Available at: https://doi.org/10.1680/jgeot.18.P.211.
Nie, J., Zhao, S., Cui, Y. & Wang, Y. 2022. Coupled effects of particle overall regularity and sliding friction on the shear behavior of uniformly graded dense sands. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), pp.873-885. Available at: https://doi.org/10.1016/j.jrmge.2021.10.014.
Nougar, B., Brahimi, A., Bouri, D.E., Arab, A. & Benessalah, I. 2021. Laboratory Investigation into the Effect of Fines Plasticity on the Mechanical Behavior of Sand/Fines Mixtures. Transportation Infrastructure Geotechnology, 8(3), pp.438-451. Available at: https://doi.org/10.1007/s40515-020-00144-5.
Ouici, A.A., Taiba, A.C., Mahmoudi, Y. & Belkhatir, M. 2024. Influence of fines and gravel particles on strength-dilatancy of river sand: Effect of depositional conditions. Marine Georesources & Geotechnology, pp.1-15. Available at: https://doi.org/10.1080/1064119X.2024.2409411.
Sabat, A.K. & Muni, P.K. 2015. Effects of Limestone Dust on Geotechnical Properties of an Expansive Soil. International Journal of Applied Engineering Research, 10(17), pp.377724-37730.
Safiddine, S., Amokrane, K., Debieb, F., Soualhi, H., Benabed, B. & Kadri, E.-H. 2021. How quarry waste limestone filler affects the rheological behavior of cement-based materials. Applied Rheology, 31, pp.63-75. Available at: https://doi.org/10.1515/arh-2020-0118.
Safiddine, S., Debieb, F., Kadri, E.-H., Menadi, B. & Soualhi, H. 2017. Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar. Applied Rheology, 27(1), pp.12-20. Available at: https://doi.org/10.3933/applrheol-27-14490.
Santamarina, J.C. & Cho, G.C. 2001. Determination of Critical State Parameters in Sandy Soils—Simple Procedure. Geotechnical Testing Journal, 24(2), pp.185-192. Available at: https://doi.org/10.1520/GTJ11338J.
Schanz, T. & Vermeer, P. 1996. Angles of friction and dilatancy of sand. Géotechnique, 46(1), pp.145-151. Available at: https://doi.org/10.1680/geot.1996.46.1.145.
Schanz, T., Vermeer, P.A. & Bonnier, P.G. 1999. The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics, 1st Edition. Routledge [online]. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315138206-27/hardening-soil-model-formulation-verification-schanz-vermeer-bonnier [Accessed: 19 January 2025]. ISBN: 9781315138206
Shabong, R.A., Sonowal, A.J., Pukhrambam, A., Das, R., Anand, A., Bobing, S. & Deka, S. 2023. An experimental study on the effect of particle size and non-homogeneity on the shear strength of soil. In: IOP Conference Series: Materials Science and Engineering, Volume 1282, 3rd International Conference on Sustainable Construction Technologies & Advancements in Civil Engineering. (ScTACE 2022), Bhimavaram, India, art.number:012021, December 15-17. Available at: https://doi.org/10.1088/1757-899X/1282/1/012021.
Shen, J., Wang, X., Wang, X., Yao, T., Wei, H. & Zhu, C. 2021. Effect and mechanism of fines content on the shear strength of calcareous sand. Bulletin of Engineering Geology and the Environment, 80, pp.7899-7919. Available at: https://doi.org/10.1007/s10064-021-02398-w.
Shi, Y., Li, S., Zhang, T., Liu, J. & Zhang, J. 2024. Compaction and shear performance of lime-modified high moisture content silty clay. Case Studies in Construction Materials, 21, e03529. Available at: https://doi.org/10.1016/j.cscm.2024.e03529.
Skender, Z., Bali, A. & Kettab, R. 2021. Self-compacting concrete (SCC) behaviour incorporating limestone fines as cement and sand replacement. European Journal of Environmental and Civil Engineering, 25(10), pp.1852-1873. Available at: https://doi.org/10.1080/19648189.2019.1607564.
Thevanayagam, S., Shenthan, T., Mohan, S. & Liang, J. 2002. Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silts. Journal of Geotechnical and Geoenvironmental Engineering, 128(10), pp.849-859. Available at: https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Vallejo, L.E. 2001. Interpretation of the limits in shear strength in binary granular mixtures. Canadian Geotechnical Journal, 38(5), pp.1097-1104. Available at: https://doi.org/10.1139/t01-029.
Xiao, Y., Liu, H., Chen, Q., Long, L. & Xiang, J. 2017. Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granular Matter, 19, art.number:71. Available at: https://doi.org/10.1007/s10035-017-0756-z.
Yang, J. & Wei, L.M. 2014. Static Liquefaction of Granular Soils: The Role of Grain Shape and Size. In: Chau, KT. & Zhao, J. (Eds.) Bifurcation and Degradation of Geomaterials in the New Millennium. IWBDG 2014. Springer Series in Geomechanics and Geoengineering, pp.199-205. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-13506-9_29.
Youd, T.L. 1973. Factors Controlling Maximum and Minimum Densities of Sands. In: Selig, E.T. & Ladd, R.S. (Eds.) Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils, pp.98-112. ASTM International. Available at: https://doi.org/10.1520/STP37866S.
Sva prava zadržana (c) 2025 Ahmed Bilal Benyahia, Ilyes Irki, Ahmed Djafar Henni, Mohammed Ezziane, Zine el abidine Laidani

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).