Effect of crushed limestone sand and dust on the mechanical behaviour of river sand mixtures: an experimental study
Abstract
Introduction: The present study aims to investigate the effect of crushed limestone sand (CLS) and limestone crushed sand dust (LCSD) on the physical and mechanical behaviour of reconstituted river sand (RS) using the volumetric substitution method.
Methods: The study involved conducting direct shear tests on two substitution series to evaluate the effect of CLS sand with incremental increases of 0, 10, 20, 30, and 40%, and LCSD dust ranging from 0 to 35% in 5% steps on the mechanical behaviour of reconstituted river sand. All samples are prepared with 50% relative density and tested under three different normal stresses of 100, 200, and 300 kPa, respectively.
Results: The results show that the substitution of river sand with CLS up to 30% enhances its mechanical properties; the peak shear strength reached a maximum value of 29% under 200 kPa of normal stress. The substitution of river sand for LSCD leads to a decrease in mechanical properties. However, a more in-depth analysis of the results obtained reveals an improvement in residual parameters, with up to 15% of substitution.
Conclusion: Following a rigorous analysis of the obtained results, it was determined that sand reconstituted from a combination of 30% CLS and 15% LCSD offers optimal performance in terms of enhanced mechanical properties. This solution aligns significantly with the sustainable development of the Algerian government strategy promoting improved characteristics and preserving natural resources while meeting the stringent requirements of the geotechnical sector.
References
-AFNOR. 1991. NF-P94-054: Sols: reconnaissance et essais–Détermination de la masse volumique des particules solides des sols–Méthode du pycnomètre à eau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94054/sols-reconnaissance-et-essais-determination-de-la-masse-volumique-des-parti/fa020767/11077 [Accessed: 19 January 2025].
-AFNOR. 1992. NF P94-057: Soils investingation and testing. Granulometric analysis. Hydrometer method [online]. Available at: https://www.boutique.afnor.org/en-gb/standard/nf-p94057/soils-investingation-and-testing-granulometric-analysis-hydrometer-method/fa020768/11074 [Accessed: 19 January 2025].
-AFNOR. 1994. NF-P94-071-1: Soil investigation and testing. Direct shear test with shearbox apparatus. Part 1: direct shear [online]. Available at: https://www.boutique.afnor.org/en-gb/standard/nf-p940711/soil-investigation-and-testing-direct-shear-test-with-shearbox-apparatus-pa/fa029769/11060 [Accessed: 19 January 2025].
-AFNOR. 1996. NF-P94‐056: Sols: reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94056/sols-reconnaissance-et-essais-analyse-granulometrique-methode-par-tamisage-/fa026936/11075 [Accessed: 19 January 2025].
-AFNOR. 2000. NF-P94-059: Sols: reconnaissance et essais - Détermination des masses volumiques minimale et maximale des sols non cohérents [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94059/sols-reconnaissance-et-essais-determination-des-masses-volumiques-minimale-/fa106659/17780 [Accessed: 19 January 2025].
Abbireddy, C.O.R. & Clayton, C.R.I. 2015. The impact of particle form on the packing and shear behaviour of some granular materials: an experimental study. Granular Matter, 17, pp.427-438. Available at: https://doi.org/10.1007/s10035-015-0566-0.
Abbou, M., Semcha, A. & Kazi-Aoual, F. 2020. Stabilization of compressed earth block clayey materials from Adrar (Algeria) by lime and crushed sand. Journal of Building Materials and Structures, 7(1), pp.42-50. Available at: https://doi.org/10.34118/jbms.v7i1.137.
Altuhafi, F.N., Coop, M.R. & Georgiannou, V.N. 2016. Effect of Particle Shape on the Mechanical Behavior of Natural Sands. Journal of Geotechnical and Geoenvironmental Engineering, 142(12). Available at: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
Aouali, N., Benessalah, I., Arab, A., Ali, B. & Abed, M. 2019. Shear Strength Response of Fibre Reinforced Chlef (Algeria) Silty Sand: Laboratory Study. Geotechnical and Geological Engineering, 37(2), pp.1047-1057. Available at: https://doi.org/10.1007/s10706-018-0641-5.
Arab, A., Hamoudi, S., Shahrour, I. & Lancelot, L. 2008. Influence of fines fraction on the behaviour of a silty sand. Revue Française de Géotechnique, 122, pp.37-43. Available at: https://doi.org/10.1051/geotech/2008122037.
Been, K. & Jefferies, M.G. 1985. A state parameter for sands. Géotechnique, 35(2), pp.99-112. Available at: https://doi.org/10.1680/geot.1985.35.2.99.
Belkhatir, M., Arab, A., Della, N., Missoum, H. & Schanz, T. 2010. Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes Rendus. Mécanique, 338(5), pp.290-303. Available at: https://doi.org/10.1016/j.crme.2010.04.002.
Belkhatir, M., Arab, A., Schanz, T., Missoum, H., Della, N. 2011. Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter, 13(5), pp.599-609. Available at: https://doi.org/10.1007/s10035-011-0269-0.
Benessalah, I., Arab, A. & Meziane, E.-H. 2021. Intergranular void ratio and undrained monotonic behavior of Chlef sand containing low plastic fines. Acta Mechanica, 232(4), pp.1621-1640. Available at: https://doi.org/10.1007/s00707-020-02923-0.
Bolton, M. 1986. The strength and dilatancy of sands. Geotechnique, 36(1), pp.65-78. Available at: https://doi.org/10.1680/geot.1986.36.1.65.
Borhani, A. & Fakharian, K. 2016. Effect of Particle Shape on Dilative Behavior and Stress Path Characteristics of Chamkhaleh Sand in Undrained Triaxial Tests. International Journal of Civil Engineering, 14, pp.197-208. Available at: https://doi.org/10.1007/s40999-016-0048-8.
Bouri, D., Krim, A., Brahim, A. & Arab, A. 2019. Shear strength of compacted Chlef sand: effect of water content, fines content and others parameters. Studia Geotechnica et Mechanica, 42(1), pp.18-35. Available at: https://doi.org/10.2478/sgem-2019-0027.
Brooks, R., Udoeyo, F.F. & Takkalapelli, K.V. 2011. Geotechnical Properties of Problem Soils Stabilized with Fly Ash and Limestone Dust in Philadelphia. Journal of Materials in Civil Engineering, 23(5), pp.711-716. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214.
Cabalar, A.F. & Omar, R.A. 2023. Stabilizing a silt using waste limestone powder. Bulletin of Engineering Geology and the Environment, 82(8), art.number:300. Available at: https://doi.org/10.1007/s10064-023-03302-4.
Cherif Taiba, A., Mahmoudi, Y., Belkhatir, M. & Schanz, T. 2018. Experimental Investigation into the Influence of Roundness and Sphericity on the Undrained Shear Response of Silty Sand Soils. Geotechnical Testing Journal, 41(3), pp. 619-633. Available at: https://doi.org/10.1520/GTJ20170118.
Cho, G.-C., Dodds, J. & Santamarina, J.C. 2006. Particle Shape Effects on Packing Density, Stiffness, and strength Natural and Crushed sands. Geotechnical and Geoenvironmental Engineering, 132(5), pp.591-602. Available at: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Cubrinovski, M. & Ishihara, K. 2002. Maximum and Minimum Void Ratio Characteristics of Sands. Soils and Foundations, 42(6), pp.65-78. Available at: https://doi.org/10.3208/sandf.42.6_65.
Daghistani, F. & Abuel-Naga, H. 2023. Evaluating the Influence of Sand Particle Morphology on Shear Strength: A Comparison of Experimental and Machine Learning Approaches. Applied Sciences, 13(14), art.number:8160. Available at: https://doi.org/10.3390/app13148160.
Ezziane, M., Henni, A.D., Denine, S., Benyahia, B.A. & Boumezerane, D. 2025. Effect of silt fines on the undrained monotonic behavior of compacted tuff soil. Arabian Journal of Geosciences, 18(1), art.number:9. Available at: https://doi.org/10.1007/s12517-024-12149-2.
Gilbert, R.B. & Byrne, R.J. 1996. Strain-Softening Behavior of Waste Containment System Interfaces. Geosynthetics International, 3(2), pp.181-203. Available at: https://doi.org/10.1680/gein.3.0059.
Gong, J., Nie, Z., Zhu, Y., Liang, Z. & Wang, X. 2019. Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM. Computers and Geotechnics, 106, pp.161-176. Available at: https://doi.org/10.1016/j.compgeo.2018.10.021.
Guemmadi, Z. & Houari, H. 2009. Utilizing crushed limestone fine wastes in Algeria as fillers in cement. Sciences & Technologie. B, Sciences de l'ingénieur, 29, pp.17-22 [online]. Available at: https://revue.umc.edu.dz/b/article/view/252 [Accessed: 19 January 2025].
Guo, P. & Su, X. 2007. Shear strength, interparticle locking, and dilatancy of granular materials. Canadian Geotechnical Journal, 44(5), pp.579-591. Available at: https://doi.org/10.1139/t07-010.
Hamidi, A., Yazdanjou, V. & Salimi, N. 2009. Shear strength characteristics of sand-gravel mixtures. International Journal of Geotechnical Engineering, 3(1), pp.29-38. Available at: https://doi.org/10.3328/IJGE.2009.03.01.29-38.
Holtz, R.D., Kovacs, W.D. & Sheahan, T.C. 2022. An Introduction to Geotechnical Engineering, 3rd edition. Pearson. ISBN: 9780135619254.
Holtz, W.G. & Gibbs, H.J. 1956. Engineering Properties of Expansive Clays. Transactions of the American Society of Civil Engineers, 121(1), pp.641-663. Available at: https://doi.org/10.1061/TACEAT.0007325.
Ibrahim, H.H., Alshkane, Y.M., Mawlood, Y.I., Noori, K.M.G. & Hasan, A.M. 2020. Improving the geotechnical properties of high expansive clay using limestone powder. Innovative Infrastructure Solutions, 5(3), art.number :112. Available at: https://doi.org/10.1007/s41062-020-00366-z.
Igwe, O. 2018. The Combined Effect of Particle Size Distribution and Relative Density on the Large Strain Behavior of Sandy Soils. Geotechnical and Geological Engineering, 36(2), pp.1037-1048. Available at: https://doi.org/10.1007/s10706-017-0372-z.
Ishihara, K. 1996. Soil Behaviour in Earthquake Geotechnics. Oxford Academic. Available at: https://doi.org/10.1093/oso/9780198562245.001.0001.
Kandasami, R.K. & Murthy, T.G. 2017. Manifestation of particle morphology on the mechanical behaviour of granular ensembles. Granular Matter, 19, art.number:21. Available at: https://doi.org/10.1007/s10035-017-0703-z.
Lade, P.V. & Yamamuro, J.A. 1997. Effects of non-plastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34(6), pp.918-928. Available at: https://doi.org/10.1139/t97-052.
Li, X., Liu, J. & Sun, Z. 2023. Shear strength-dilation characteristics of coral sand contained fines. Bulletin of Engineering Geology and the Environment, 82(9), art.number:349. Available at: https://doi.org/10.1007/s10064-023-03349-3.
LI, Y. 2013. Effects of particle shape and size distribution on the shear strength behavior of composite soils. Bulletin of Engineering Geology and the Environment, 72, pp.371-381. Available at: https://doi.org/10.1007/s10064-013-0482-7.
Liu, Y., Liu, X. & Hu, W. 2023. Competition mechanism between dilation and interlocking in granular soils: DEM simulation and constitutive modeling. Acta Geotechnica, 18(1), pp.149-169. Available at: https://doi.org/10.1007/s11440-022-01552-2.
Logbi, A., Mani, M., Choungara, T. & Kriker, A. 2023. Comparative study of the effect of crushed dune sand and limestone fillers on mortar properties in aggressive environment. World Journal of Engineering, 20(1), pp.85-92. Available at: https://doi.org/10.1108/WJE-09-2020-0437.
Lu, Z., Yao, A., Su, A., Ren, X., Liu, Q. & Dong, S. 2019. Re-recognizing the impact of particle shape on physical and mechanical properties of sandy soils: A numerical study. Engineering Geology, 253, pp.36-46. Available at: https://doi.org/10.1016/j.enggeo.2019.03.011.
Monkul, M.M., Etminan, E. & Şenol, A. 2016. Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt. Soil Dynamics and Earthquake Engineering, 89, pp.185-197. Available at: https://doi.org/10.1016/j.soildyn.2016.08.001.
Monkul, M.M., Etminan, E. & Senol, A. 2017. Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands. Soil Dynamics and Earthquake Engineering, 101, pp.12-26. Available at: https://doi.org/10.1016/j.soildyn.2017.06.023.
Monkul, M.M. & Ozden, G. 2007. Compressional behavior of clayey sand and transition fines content. Engineering Geology, 89(3-4), pp.195-205. Available at: https://doi.org/10.1016/j.enggeo.2006.10.001.
Nafisi, A., Khoubani, A., Montoya, B.M. & Evans, M. 2018. The effect of grain size and shape on mechanical behavior of MICP sand I: experimental study. In: Proceedings of the 11th National Conference on Earthquake Engineering, Los Angeles, CA, USA, June 25-29. Earthquake Engineering Research Institute (EERI). ISBN: 9781510873254.
Najjar, S., Yaghi, K., Adwan, M. & Jaoude, A. 2015. Drained shear strength of compacted sand with clayey fines. International Journal of Geotechnical Engineering, 9(5), pp.513-520. Available at: https://doi.org/10.1179/1939787915Y.0000000001.
Nguyen, H.B.K., Rahman, M.M. & Fourie, A.B. 2021. How particle shape affects the critical state, triggering of instability and dilatancy of granular materials–results from a DEM study. Géotechnique, 71(9), pp.749-764. Available at: https://doi.org/10.1680/jgeot.18.P.211.
Nie, J., Zhao, S., Cui, Y. & Wang, Y. 2022. Coupled effects of particle overall regularity and sliding friction on the shear behavior of uniformly graded dense sands. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), pp.873-885. Available at: https://doi.org/10.1016/j.jrmge.2021.10.014.
Nougar, B., Brahimi, A., Bouri, D.E., Arab, A. & Benessalah, I. 2021. Laboratory Investigation into the Effect of Fines Plasticity on the Mechanical Behavior of Sand/Fines Mixtures. Transportation Infrastructure Geotechnology, 8(3), pp.438-451. Available at: https://doi.org/10.1007/s40515-020-00144-5.
Ouici, A.A., Taiba, A.C., Mahmoudi, Y. & Belkhatir, M. 2024. Influence of fines and gravel particles on strength-dilatancy of river sand: Effect of depositional conditions. Marine Georesources & Geotechnology, pp.1-15. Available at: https://doi.org/10.1080/1064119X.2024.2409411.
Sabat, A.K. & Muni, P.K. 2015. Effects of Limestone Dust on Geotechnical Properties of an Expansive Soil. International Journal of Applied Engineering Research, 10(17), pp.377724-37730.
Safiddine, S., Amokrane, K., Debieb, F., Soualhi, H., Benabed, B. & Kadri, E.-H. 2021. How quarry waste limestone filler affects the rheological behavior of cement-based materials. Applied Rheology, 31, pp.63-75. Available at: https://doi.org/10.1515/arh-2020-0118.
Safiddine, S., Debieb, F., Kadri, E.-H., Menadi, B. & Soualhi, H. 2017. Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar. Applied Rheology, 27(1), pp.12-20. Available at: https://doi.org/10.3933/applrheol-27-14490.
Santamarina, J.C. & Cho, G.C. 2001. Determination of Critical State Parameters in Sandy Soils—Simple Procedure. Geotechnical Testing Journal, 24(2), pp.185-192. Available at: https://doi.org/10.1520/GTJ11338J.
Schanz, T. & Vermeer, P. 1996. Angles of friction and dilatancy of sand. Géotechnique, 46(1), pp.145-151. Available at: https://doi.org/10.1680/geot.1996.46.1.145.
Schanz, T., Vermeer, P.A. & Bonnier, P.G. 1999. The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics, 1st Edition. Routledge [online]. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315138206-27/hardening-soil-model-formulation-verification-schanz-vermeer-bonnier [Accessed: 19 January 2025]. ISBN: 9781315138206
Shabong, R.A., Sonowal, A.J., Pukhrambam, A., Das, R., Anand, A., Bobing, S. & Deka, S. 2023. An experimental study on the effect of particle size and non-homogeneity on the shear strength of soil. In: IOP Conference Series: Materials Science and Engineering, Volume 1282, 3rd International Conference on Sustainable Construction Technologies & Advancements in Civil Engineering. (ScTACE 2022), Bhimavaram, India, art.number:012021, December 15-17. Available at: https://doi.org/10.1088/1757-899X/1282/1/012021.
Shen, J., Wang, X., Wang, X., Yao, T., Wei, H. & Zhu, C. 2021. Effect and mechanism of fines content on the shear strength of calcareous sand. Bulletin of Engineering Geology and the Environment, 80, pp.7899-7919. Available at: https://doi.org/10.1007/s10064-021-02398-w.
Shi, Y., Li, S., Zhang, T., Liu, J. & Zhang, J. 2024. Compaction and shear performance of lime-modified high moisture content silty clay. Case Studies in Construction Materials, 21, e03529. Available at: https://doi.org/10.1016/j.cscm.2024.e03529.
Skender, Z., Bali, A. & Kettab, R. 2021. Self-compacting concrete (SCC) behaviour incorporating limestone fines as cement and sand replacement. European Journal of Environmental and Civil Engineering, 25(10), pp.1852-1873. Available at: https://doi.org/10.1080/19648189.2019.1607564.
Thevanayagam, S., Shenthan, T., Mohan, S. & Liang, J. 2002. Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silts. Journal of Geotechnical and Geoenvironmental Engineering, 128(10), pp.849-859. Available at: https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Vallejo, L.E. 2001. Interpretation of the limits in shear strength in binary granular mixtures. Canadian Geotechnical Journal, 38(5), pp.1097-1104. Available at: https://doi.org/10.1139/t01-029.
Xiao, Y., Liu, H., Chen, Q., Long, L. & Xiang, J. 2017. Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granular Matter, 19, art.number:71. Available at: https://doi.org/10.1007/s10035-017-0756-z.
Yang, J. & Wei, L.M. 2014. Static Liquefaction of Granular Soils: The Role of Grain Shape and Size. In: Chau, KT. & Zhao, J. (Eds.) Bifurcation and Degradation of Geomaterials in the New Millennium. IWBDG 2014. Springer Series in Geomechanics and Geoengineering, pp.199-205. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-13506-9_29.
Youd, T.L. 1973. Factors Controlling Maximum and Minimum Densities of Sands. In: Selig, E.T. & Ladd, R.S. (Eds.) Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils, pp.98-112. ASTM International. Available at: https://doi.org/10.1520/STP37866S.
Copyright (c) 2025 Ahmed Bilal Benyahia, Ilyes Irki, Ahmed Djafar Henni, Mohammed Ezziane, Zine el abidine Laidani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).