Uticaj varijacija parametara na kristalizaciju zeolita mordenita

  • IKRAM yssaad Laboratory of Functional and Nanostructured Ecomaterials, Mohamed Boudiaf University of Science and Technology, Oran https://orcid.org/0009-0008-1257-741X
  • Фатиха ХАМИДИб Хемијски факултет, Лабораторија за функционалне и наноструктуриране екоматеријале, Универзитет науке и технологије Мохамед Будијаф, Оран
  • Denis LUART Университе де Тецхнологие де Цомпиегне, ЕСЦОМ, Аллианце Сорбонне Университе, ТИМР, Цомпиегне, Француска https://orcid.org/0000-0003-3136-9815

Sažetak


Objet/français : Vous devez utiliser les paramètres de synthèse de la cristallisation de la zéolite naturelle. Le contrôle précis de l'odeur de SiО ₂ /Ал ₂ О ₃ , les alcalis et la cristallisation ont pour résultat la cristallisation de la mordénite. Et c'est optimal pour créer une forme secondaire ou ammortissante.

Méthode : Les matériaux utilisés dans la méthode hydrothermale sont du gel de silice et de l'aluminium naturel pour l'utilisation de silicium, односно алуминијума. Les paramètres de synthèse varient en fonction de la quantité d'alcool dans le sang si ₂ / Ал ₂ О ₃ , alcalinost (ОХ-/Си), као и време christalisaције, како Il s'agit de la procédure à suivre pour former Kristal Mordenita. Expérimentez avec une température constante de 170°Ц.

Résultats :  Le résultat est arrivé à votre bébé SiО ₂ /Ал ₂ О ₃ vous trouverez votre lettre dans la forme de Cristal. Un jour, vers 15 ans, il favorise la formation de Cristaux Analytiques. Pendant cette période, je vis un jour vers l'âge de 30 ans et je dois former Kristal Mordenita en voyant les cristaux et le chistose. Moi, j'ai un enfant d'environ 60 ans, je fournis du matériel amorphénique.

Il s'agit de substances alcalines (ОХ - /Си), dont les valeurs sont de 0,39 et 0,49, ce qui entraîne une augmentation de la quantité de cristaux de cristaux mordants. Les valeurs, qui sont de 0,59, correspondent à la formation d'une seconde phase. C'est le moment de la cristallisation, entre 48 et 72 heures, à 170°C pour votre poitrine, juste pour la cristallisation de la cristallisation.

Remarque : Vous devez utiliser les paramètres de synthèse de la cristallisation de la zéolite naturelle. Le contrôle précis de l'odeur de SiО ₂ /Ал ₂ О ₃ , les alcalis et la cristallisation ont pour résultat la cristallisation de la mordénite. Et c'est optimal pour créer une forme secondaire ou ammortissante.

Кључне речи: Морденит, Алкалитет, Си/Ал однос, Кristalizација, Зеолит.

Reference

Aloulou, H., Bouhamed, H., Ghorbel, A., Ben Amar, R., Khemakhem, S., 2017. Elaboration and characterization of ceramic microfiltration membranes from natural zeolite: application to the treatment of cuttlefish effluents. Desalination and Water Treatment 95, 9–17. Available at: https://doi.org/10.5004/dwt.2017.21348

Bajpai, P.K., 1986. Synthesis of mordenite type zeolite. Zeolites 6, 2–8. Available at: https://doi.org/10.1016/0144-2449(86)90002-3

Bolshakov, A., Romero Hidalgo, D.E., van Hoof, A.J.F., Kosinov, N., Hensen, E.J.M., 2019. Mordenite Nanorods Prepared by an Inexpensive Pyrrolidine‐based Mesoporogen for Alkane Hydroisomerization. ChemCatChem 11, 2803–2811. Available at: https://doi.org/10.1002/cctc.201900298

Borissenko, E., n.d. Étude structurale par diffraction, absorption des rayons X et simulations Monte-Carlo de matériaux zéolithiques Available at: https://theses.fr/2008NAN10074

Brezicki, G., Zheng, J., Paolucci, C., Schlögl, R., Davis, R.J., 2021. Effect of the Co-cation on Cu Speciation in Cu-Exchanged Mordenite and ZSM-5 Catalysts for the Oxidation of Methane to Methanol. ACS Catalysis. 11, 4973–4987. Available at: https://doi.org/10.1021/acscatal.1c00543

Chen, J., Ma, H., Liu, C., Yuan, J., 2017. Synthesis of Analcime Crystals and Simultaneous Potassium Extraction from Natrolite Syenite. Advances in Materials Science and Engineering 2017, 1–9. Available at: https://doi.org/10.1155/2017/2617597

De Macedo, J.L., Dias, S.C.L., Dias, J.A., 2004. Multiple adsorption process description of zeolite mordenite acidity. Microporous and Mesoporous Materials 72, 119–125. Available at: https://doi.org/10.1016/j.micromeso.2004.04.009

Gili, M., Conato, M., 2019. Synthesis and characterization of mordenite-type zeolites via hydrothermal method using silica gel and sodium aluminate as Si and Al sources at varying temperature. Journal of Physics.: Conf. Ser. 1191, 012038. Available at: https://doi.org/10.1088/1742-6596/1191/1/012038

Gili, M.B.Z., Conato, M.T., 2019. Adsorption uptake of mordenite-type zeolites with varying Si/Al ratio on Zn 2+ ions in aqueous solution. Materials Research Express 6, 045508. Available at: https://doi.org/10.1088/2053-1591/aafc08

Gili, M.B.Z., Conato, M.T., 2018. Synthesis and characterization of mordenite-type zeolites with varying Si/Al ratio. Materials Research Express 6, 015515. Available at: https://doi.org/10.1088/2053-1591/aae8db

Golden, T.C., Jenkins, R.G., 1981. Ion exchange in mordenite. Verification of the triangle rule. Journal of Chemical and Engineering Data 26, 366–367. Available at: https://doi.org/10.1021/je00026a005

Güngör, D., Özen, S., 2021. Development and characterization of clinoptilolite-, mordenite-, and analcime-based geopolymers: A comparative study. Case Studies in Construction Materials 15, e00576. Available at: https://doi.org/10.1016/j.cscm.2021.e00576

Hamidi, F., Bengueddach, A., Renzo, F.D., Fajula, F., n.d. Control of Crystal Size and Morphology of Mordenite. Catalysis Letters. Available at: http://dx.doi.org/10.1023/A:1023439121921

Hamidi, F., Petitto, C., Signorile, C., Delahay, G., Bengueddach, A., 2011. Selective catalytic reduction of nitric oxide with ammonia over Fe-MOR catalysts prepared from Fe(acac)3 precursor. Reaction Kinetics, Mechanisms and Catalysis 104, 429–436. Available at: https://doi.org/10.1007/s11144-011-0359-3

Hincapie, B.O., Garces, L.J., Zhang, Q., Sacco, A., Suib, S.L., 2004. Synthesis of mordenite nanocrystals. Microporous and Mesoporous Materials 67, 19–26. Available at: https://doi.org/10.1016/j.micromeso.2003.09.026

Jia, X., Khan, W., Wu, Z., Choi, J., Yip, A.C.K., 2019. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology 30, 467–484. Available at: https://doi.org/10.1016/j.apt.2018.12.014

Khalil, U., Muraza, O., 2016. Microwave-assisted hydrothermal synthesis of mordenite zeolite: Optimization of synthesis parameters. Microporous and Mesoporous Materials 232, 211–217. Available at: https://doi.org/10.1016/j.micromeso.2016.06.016

Klunk, M.A., Schröpfer, S.B., Dasgupta, S., Das, M., Caetano, N.R., Impiombato, A.N., Wander, P.R., Moraes, C.A.M., 2020. Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a source of aluminium and silicon. Chemical Papers. 74, 2481–2489. Available at: https://doi.org/10.1007/s11696-020-01095-4

Kordala, N., Wyszkowski, M., 2024. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 29, 1069. Available at: https://doi.org/10.3390/molecules29051069

Larlus, O., Valtchev, V.P., 2004. Crystal Morphology Control of LTL-Type Zeolite Crystals. Chemistry of Materials. 16, 3381–3389. Available at: https://doi.org/10.1021/cm0498741

Le, H.V., Parishan, S., Sagaltchik, A., Göbel, C., Schlesiger, C., Malzer, W., Trunschke, A., Schomäcker, R., Thomas, A., 2017. Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis. 7, 1403–1412. Available at: https://doi.org/10.1021/acscatal.6b02372

Li, G., Hou, H., Lin, R., 2011. Rapid synthesis of mordenite crystals by microwave heating. Solid State Sciences 13, 662–664. Available at: https://doi.org/10.1016/j.solidstatesciences.2010.12.040

Li, J., Gao, M., Yan, W., Yu, J., 2023. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chemical Science. 14, 1935–1959. Available at: https://doi.org/10.1039/D2SC06010H

Lima, E.G., Medeiros Nascimento Silva, F., Lins Almeida Barbosa, T., Freire Rodrigues, M.G., 2023. Organic Structure-Directing Agent Free Synthesis of Mordenite with Seeds, Used as A Support for Mo Catalysts in the Transesterification of Soybean Oil. Catalysis Research 03, 1–20. Available at: https://doi.org/10.21926/cr.2302015

Limousy, L., Dutournié, P., Chevereau-Landais, E., 2013. Description of the preferential transport of monovalent salts through Na–mordenite membrane: Physico-chemical aspects. Microporous and Mesoporous Materials 167, 133–136. Available at: https://doi.org/10.1016/j.micromeso.2012.01.025

Mohamed, M.M., Nohman, A.K.H., Zaki, M.I., 2006. Development of Catalytic Properties of Mordenite Zeolite via Chemical Modification. ChemInform 37, chin.200638241. Available at: https://doi.org/10.1002/chin.200638241

Mohamed, M.M., Salama, T.M., Othman, I., Ellah, I.A., 2005. Synthesis of high silica mordenite nanocrystals using o-phenylenediamine template. Microporous and Mesoporous Materials 84, 84–96. Available at: https://doi.org/10.1016/j.micromeso.2005.05.017

Narayanan, S., Tamizhdurai, P., Mangesh, V.L., Ragupathi, C., Santhana Krishnan, P., Ramesh, A., 2021. Recent advances in the synthesis and applications of mordenite zeolite – review. RSC Advances. 11, 250–267. Available at: https://doi.org/10.1039/D0RA09434J

Nasser, G.A., Kurniawan, T., Tago, T., Bakare, I.A., Taniguchi, T., Nakasaka, Y., Masuda, T., Muraza, O., 2016. Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers 61, 20–25. Available at: https://doi.org/10.1016/j.jtice.2015.11.025

Nazir, L.S.M., Yeong, Y.F., Chew, T.L., 2020. Methods and synthesis parameters affecting the formation of FAU type zeolite membrane and its separation performance: a review. Journal of Asian Ceramic Societies 8, 553–571. Available at: https://doi.org/10.1080/21870764.2020.1769816

Pérez-Botella, E., Valencia, S., Rey, F., 2022. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews. 122, 17647–17695. Available at: https://doi.org/10.1021/acs.chemrev.2c00140

V. Rahbari, Z., Khosravan, M., N. Kharat, A., 2017. Dealumination of mordenite zeolite and its catalytic performance evaluation in m-xylene isomerization reaction. Bulletin of the Chemical Society of Ethiopia. 31, 281. Available at: https://doi.org/10.4314/bcse.v31i2.9

Zhang, L., Xie, S., Xin, W., Li, X., Liu, S., Xu, L., 2011. Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis. Materials Research Bulletin 46, 894–900. Available at: https://doi.org/10.1016/j.materresbull.2011.02.018

Zhang, Q., Chen, G., Wang, Y., Chen, M., Guo, G., Shi, J., Luo, J., Yu, J., 2018. High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials. 30, 2750–2758. Available at: https://doi.org/10.1021/acs.chemmater.8b00527

Zhu, M.-H., Hua, X.-M., Liu, Y.-S., Hu, H., Li, Y., Hu, N., Kumakiri, I., Chen, X.-S., Kita, H., 2016. Influences of Synthesis Parameters on Preparation of Acid-Stable and Reproducible Mordenite Membrane. Industrial & Engineering Chemistry Research 55, 12268–12275. Available at: https://doi.org/10.1021/acs.iecr.6b02125

Zhu, M.-H., Xia, S.-L., Hua, X.-M., Feng, Z.-J., Hu, N., Zhang, F., Kumakiri, I., Lu, Z.-H., Chen, X.-S., Kita, H., 2014. Rapid Preparation of Acid-Stable and High Dehydration Performance Mordenite Membranes. Industrial & Engineering Chemistry Research. 53, 19168–19174. Available at: https://doi.org/10.1021/ie501248y

Objavljeno
2025/10/16
Rubrika
Originalni naučni radovi