Effect of variations in parameters on the crystallization of mordenite zeolite
Abstract
Introduction/Objectif : Cette étude met en évidence l'importance des paramètres de synthèse dans la cristallisation de la zéolite mordénite. Un contrôle précis du rapport SiO₂ / Al₂O₃ , de l'alcalinité et du temps de cristallisation permet d'obtenir des cristaux de mordénite à cristallinité élevée et à pureté optimale, tout en évitant la formation de phases secondaires ou amorphes.
Méthodes : Les matériaux ont été préparés par la méthode hydrothermale, en utilisant du gel de silice et de l'aluminate de sodium comme sources de silicium et d'aluminium, respectivement. Plusieurs paramètres de synthèse ont été modifiés, notamment le rapport molaire SiO₂ / Al₂O₃ , l' alcalinité (OH - /Si), ainsi que le temps de cristallisation, afin d'évaluer leur effet sur la formation des cristaux de mordénite. Les expériences ont été réalisées à une température constante de 170°C.
Résultats : Les résultats montrent que le rapport SiO₂ / Al₂O₃ joue un rôle crucial dans la formation des cristaux. Un rapport faible, tel que 15, favorise la formation de cristaux d'analcime. En revanche, un rapport élevé, tel que 30 , conduit à la formation de cristaux de mordénite à cristallinité et pureté élevées. Cependant, un rapport encore plus élevé, tel que 60, produit un matériau amorphe.
En ce qui concerne l'alcalinité (OH - /Si), des valeurs de 0,39 et 0,49 donnent des cristaux de mordénite purs et bien cristallisés, tandis que des valeurs plus élevées, comme 0,59, conduisent à la formation de phases secondaires. En ce qui concerne le temps de cristallisation, des périodes de 48 et 72 heures à 170°C ont donné des cristaux de mordénite purs et bien cristallisés.
Conclusion : Cette étude met en évidence l'importance des paramètres de synthèse dans la cristallisation de la zéolite mordénite. Un contrôle précis du rapport SiO₂ / Al₂O₃ , de l'alcalinité et du temps de cristallisation permet d'obtenir des cristaux de mordénite à cristallinité élevée et à pureté optimale, tout en évitant la formation de phases secondaires ou amorphes.
Mots clés : Mordénite, Alcalinité, Rapport Si/Al, Cristallisation, Zéolite.
References
Aloulou, H., Bouhamed, H., Ghorbel, A., Ben Amar, R., Khemakhem, S., 2017. Elaboration and characterization of ceramic microfiltration membranes from natural zeolite: application to the treatment of cuttlefish effluents. Desalination and Water Treatment 95, 9–17. Available at: https://doi.org/10.5004/dwt.2017.21348
Bajpai, P.K., 1986. Synthesis of mordenite type zeolite. Zeolites 6, 2–8. Available at: https://doi.org/10.1016/0144-2449(86)90002-3
Bolshakov, A., Romero Hidalgo, D.E., van Hoof, A.J.F., Kosinov, N., Hensen, E.J.M., 2019. Mordenite Nanorods Prepared by an Inexpensive Pyrrolidine‐based Mesoporogen for Alkane Hydroisomerization. ChemCatChem 11, 2803–2811. Available at: https://doi.org/10.1002/cctc.201900298
Borissenko, E., n.d. Étude structurale par diffraction, absorption des rayons X et simulations Monte-Carlo de matériaux zéolithiques Available at: https://theses.fr/2008NAN10074
Brezicki, G., Zheng, J., Paolucci, C., Schlögl, R., Davis, R.J., 2021. Effect of the Co-cation on Cu Speciation in Cu-Exchanged Mordenite and ZSM-5 Catalysts for the Oxidation of Methane to Methanol. ACS Catalysis. 11, 4973–4987. Available at: https://doi.org/10.1021/acscatal.1c00543
Chen, J., Ma, H., Liu, C., Yuan, J., 2017. Synthesis of Analcime Crystals and Simultaneous Potassium Extraction from Natrolite Syenite. Advances in Materials Science and Engineering 2017, 1–9. Available at: https://doi.org/10.1155/2017/2617597
De Macedo, J.L., Dias, S.C.L., Dias, J.A., 2004. Multiple adsorption process description of zeolite mordenite acidity. Microporous and Mesoporous Materials 72, 119–125. Available at: https://doi.org/10.1016/j.micromeso.2004.04.009
Gili, M., Conato, M., 2019. Synthesis and characterization of mordenite-type zeolites via hydrothermal method using silica gel and sodium aluminate as Si and Al sources at varying temperature. Journal of Physics.: Conf. Ser. 1191, 012038. Available at: https://doi.org/10.1088/1742-6596/1191/1/012038
Gili, M.B.Z., Conato, M.T., 2019. Adsorption uptake of mordenite-type zeolites with varying Si/Al ratio on Zn 2+ ions in aqueous solution. Materials Research Express 6, 045508. Available at: https://doi.org/10.1088/2053-1591/aafc08
Gili, M.B.Z., Conato, M.T., 2018. Synthesis and characterization of mordenite-type zeolites with varying Si/Al ratio. Materials Research Express 6, 015515. Available at: https://doi.org/10.1088/2053-1591/aae8db
Golden, T.C., Jenkins, R.G., 1981. Ion exchange in mordenite. Verification of the triangle rule. Journal of Chemical and Engineering Data 26, 366–367. Available at: https://doi.org/10.1021/je00026a005
Güngör, D., Özen, S., 2021. Development and characterization of clinoptilolite-, mordenite-, and analcime-based geopolymers: A comparative study. Case Studies in Construction Materials 15, e00576. Available at: https://doi.org/10.1016/j.cscm.2021.e00576
Hamidi, F., Bengueddach, A., Renzo, F.D., Fajula, F., n.d. Control of Crystal Size and Morphology of Mordenite. Catalysis Letters. Available at: http://dx.doi.org/10.1023/A:1023439121921
Hamidi, F., Petitto, C., Signorile, C., Delahay, G., Bengueddach, A., 2011. Selective catalytic reduction of nitric oxide with ammonia over Fe-MOR catalysts prepared from Fe(acac)3 precursor. Reaction Kinetics, Mechanisms and Catalysis 104, 429–436. Available at: https://doi.org/10.1007/s11144-011-0359-3
Hincapie, B.O., Garces, L.J., Zhang, Q., Sacco, A., Suib, S.L., 2004. Synthesis of mordenite nanocrystals. Microporous and Mesoporous Materials 67, 19–26. Available at: https://doi.org/10.1016/j.micromeso.2003.09.026
Jia, X., Khan, W., Wu, Z., Choi, J., Yip, A.C.K., 2019. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology 30, 467–484. Available at: https://doi.org/10.1016/j.apt.2018.12.014
Khalil, U., Muraza, O., 2016. Microwave-assisted hydrothermal synthesis of mordenite zeolite: Optimization of synthesis parameters. Microporous and Mesoporous Materials 232, 211–217. Available at: https://doi.org/10.1016/j.micromeso.2016.06.016
Klunk, M.A., Schröpfer, S.B., Dasgupta, S., Das, M., Caetano, N.R., Impiombato, A.N., Wander, P.R., Moraes, C.A.M., 2020. Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a source of aluminium and silicon. Chemical Papers. 74, 2481–2489. Available at: https://doi.org/10.1007/s11696-020-01095-4
Kordala, N., Wyszkowski, M., 2024. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 29, 1069. Available at: https://doi.org/10.3390/molecules29051069
Larlus, O., Valtchev, V.P., 2004. Crystal Morphology Control of LTL-Type Zeolite Crystals. Chemistry of Materials. 16, 3381–3389. Available at: https://doi.org/10.1021/cm0498741
Le, H.V., Parishan, S., Sagaltchik, A., Göbel, C., Schlesiger, C., Malzer, W., Trunschke, A., Schomäcker, R., Thomas, A., 2017. Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis. 7, 1403–1412. Available at: https://doi.org/10.1021/acscatal.6b02372
Li, G., Hou, H., Lin, R., 2011. Rapid synthesis of mordenite crystals by microwave heating. Solid State Sciences 13, 662–664. Available at: https://doi.org/10.1016/j.solidstatesciences.2010.12.040
Li, J., Gao, M., Yan, W., Yu, J., 2023. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chemical Science. 14, 1935–1959. Available at: https://doi.org/10.1039/D2SC06010H
Lima, E.G., Medeiros Nascimento Silva, F., Lins Almeida Barbosa, T., Freire Rodrigues, M.G., 2023. Organic Structure-Directing Agent Free Synthesis of Mordenite with Seeds, Used as A Support for Mo Catalysts in the Transesterification of Soybean Oil. Catalysis Research 03, 1–20. Available at: https://doi.org/10.21926/cr.2302015
Limousy, L., Dutournié, P., Chevereau-Landais, E., 2013. Description of the preferential transport of monovalent salts through Na–mordenite membrane: Physico-chemical aspects. Microporous and Mesoporous Materials 167, 133–136. Available at: https://doi.org/10.1016/j.micromeso.2012.01.025
Mohamed, M.M., Nohman, A.K.H., Zaki, M.I., 2006. Development of Catalytic Properties of Mordenite Zeolite via Chemical Modification. ChemInform 37, chin.200638241. Available at: https://doi.org/10.1002/chin.200638241
Mohamed, M.M., Salama, T.M., Othman, I., Ellah, I.A., 2005. Synthesis of high silica mordenite nanocrystals using o-phenylenediamine template. Microporous and Mesoporous Materials 84, 84–96. Available at: https://doi.org/10.1016/j.micromeso.2005.05.017
Narayanan, S., Tamizhdurai, P., Mangesh, V.L., Ragupathi, C., Santhana Krishnan, P., Ramesh, A., 2021. Recent advances in the synthesis and applications of mordenite zeolite – review. RSC Advances. 11, 250–267. Available at: https://doi.org/10.1039/D0RA09434J
Nasser, G.A., Kurniawan, T., Tago, T., Bakare, I.A., Taniguchi, T., Nakasaka, Y., Masuda, T., Muraza, O., 2016. Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers 61, 20–25. Available at: https://doi.org/10.1016/j.jtice.2015.11.025
Nazir, L.S.M., Yeong, Y.F., Chew, T.L., 2020. Methods and synthesis parameters affecting the formation of FAU type zeolite membrane and its separation performance: a review. Journal of Asian Ceramic Societies 8, 553–571. Available at: https://doi.org/10.1080/21870764.2020.1769816
Pérez-Botella, E., Valencia, S., Rey, F., 2022. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews. 122, 17647–17695. Available at: https://doi.org/10.1021/acs.chemrev.2c00140
V. Rahbari, Z., Khosravan, M., N. Kharat, A., 2017. Dealumination of mordenite zeolite and its catalytic performance evaluation in m-xylene isomerization reaction. Bulletin of the Chemical Society of Ethiopia. 31, 281. Available at: https://doi.org/10.4314/bcse.v31i2.9
Zhang, L., Xie, S., Xin, W., Li, X., Liu, S., Xu, L., 2011. Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis. Materials Research Bulletin 46, 894–900. Available at: https://doi.org/10.1016/j.materresbull.2011.02.018
Zhang, Q., Chen, G., Wang, Y., Chen, M., Guo, G., Shi, J., Luo, J., Yu, J., 2018. High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials. 30, 2750–2758. Available at: https://doi.org/10.1021/acs.chemmater.8b00527
Zhu, M.-H., Hua, X.-M., Liu, Y.-S., Hu, H., Li, Y., Hu, N., Kumakiri, I., Chen, X.-S., Kita, H., 2016. Influences of Synthesis Parameters on Preparation of Acid-Stable and Reproducible Mordenite Membrane. Industrial & Engineering Chemistry Research 55, 12268–12275. Available at: https://doi.org/10.1021/acs.iecr.6b02125
Zhu, M.-H., Xia, S.-L., Hua, X.-M., Feng, Z.-J., Hu, N., Zhang, F., Kumakiri, I., Lu, Z.-H., Chen, X.-S., Kita, H., 2014. Rapid Preparation of Acid-Stable and High Dehydration Performance Mordenite Membranes. Industrial & Engineering Chemistry Research. 53, 19168–19174. Available at: https://doi.org/10.1021/ie501248y
Copyright (c) 2025 IKRAM yssaad, Фатиха ХАМИДИб, Denis LUART

This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
