Numeričko modelovanje udara projektila o metalne strukture

  • Dragoljub M. Spasić Uprava za logistiku (J-4) GS VS Beograd
Ključne reči: aircraft||, ||vazduhoplov, aircraft structure||, ||vazduhoplovne strukture, impact||, ||udar, impact damage||, ||udarna oštećenja, modeling||, ||modelovanje, missile||, ||projektil, bullet projectile||, ||pancirni projektil, penetrator||, ||penetrator, projectile penetration||, ||prodor projektila, penetration||, ||probojnost, ballistic protection||, ||balistička zaštita,

Sažetak


U radu je opisano numeričko modelovanje udarnih oštećenja koja nastaju pri udaru projektila o metalne strukture. Prikazani su i eksperimentalni rezultati udara projektila različitih oblika vrhova o metalne strukture.  Eksperimenti su sprovedeni udarom projektila o metalne prepreke od čelika i aluminijuma različitih debljina sa promenom brzine udara projektila. Kako bi efekti eksperimentalnih simulacija udara bili što približniji stvarnom, brzine udara projektila su varirane, tako da odgovaraju prosečnim i graničnim brzinama udara projektila pri kojima dolazi do probijanja prepreke. Dobijeni eksperimentalni rezultati su se podudarili sa sprovedenim realnim dejstvom na metalne prepreke i sličnim ispitivanjima prikazanim u stranoj literaturi.

Reference

Anderson, C.E., 1987. An overview of the theory of hydrocodes. International Journal of Impact Engineering, 5(1-4), pp.33-59. Available at: https://doi.org/10.1016/0734-743X(87)90029-7.

Anderson, C.E., Cox, P.A., Johnson, G.R. & Maudlin, P.J., 1994. A constitutive formulation for anisotropic materials suitable for wave propagation computer programs—II. Computational Mechanics, 15(3), pp.201-223. Available at: https://doi.org/10.1007/BF00375030.

Anderson, T.A., 2005. An investigation of SDOF models for large mass impact on sandwich composites. Composites Part B: Engineering, 36(2), pp.135-142. Available at: https://doi.org/10.1016/j.compositesb.2004.05.002.

Backman, M.E. & Goldsmith, W., 1978. The mechanics of penetration of projectiles into targets. International Journal of Engineering Science, 16(1), pp.1-99. Available at: https://doi.org/10.1016/0020-7225(78)90002-2.

Borvik, T., Hopperstad, O.S., Langseth, M. & Malo, K.A., 2003. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. International Journal of Impact Engineering, 28(4), pp.413-464. Available at: https://doi.org/10.1016/S0734-743X(02)00072-6.

Borvik, T., Clausen, A.H., Hopperstad, O.S. & Langseth, M., 2004. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles: Experimental study. International Journal of Impact Engineering, 30(4), pp.367-384. Available at: https://doi.org/10.1016/S0734-743X(03)00072-1.

Clausen, A.H., Borvik, T., Hopperstad, O.S. & Benallal, A., 2004. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering, 364(1-2), pp.260-272. Available at: https://doi.org/10.1016/j.msea.2003.08.027.

Dey, S., 2004. High-strength steel plates subjected to projectile impact: An experimental and numerical study, Ph.D. thesis, Norwegian University of Science and Technology, ISBN 82-471-6282-2.

Gingold, R.A. & Monaghan, J.J., 1977. Smoothed particle hydrodynamics: Theory and application to nonspherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), pp.375-389. Available at: https://doi.org/10.1093/mnras/181.3.375.

Johnson, G.R. & Cook, W.H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), pp.31-48. Available at: https://doi.org/10.1016/0013-7944(85)90052-9.

Lee, M. & Yoo, Y.H., 2001. Analysis of ceramic/metal armour system. International Journal of Impact Engineering, 25(9), pp.819-829. Available at: https://doi.org/10.1016/S0734-743X(01)00025-2.

Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82, pp.1013-1024. Available at: https://doi.org/10.1086/112164.

Ravid, M. & Bodner, S.R., 1983. Dynamic perforation of viscoplastic plates by rigid projectiles. International Journal of Engineering Science, 21(6), pp.577-591. Available at: https://doi.org/10.1016/0020-7225(83)90105-2.

Rosenberg, Z. & Tsaliah, J., 1990. Applying Tate's model for the interaction of long rod projectiles with ceramic targets. International Journal of Impact Engineering, 9(2), pp.247-251. Available at: https://doi.org/10.1016/0734-743X(90)90016-O.

Rosenberg, Z. & Yeshurun, Y., 1988. The relation between ballistic efficiency andcompressive strength of ceramic tiles. International Journal of Impact Engineering, 7(3), pp.357-362. Available at: https://doi.org/10.1016/0734-743X(88)90035-8.

Spasić, D., 2015. Modelovanje udarnih oštećenja vazduhoplovnih struktura, Ph.D. thesis, University in Belgrade: Faculty of Mechanical Engineering (in Serbian).

Taylor, G.I., 1948. The formation and enlargement of a circular hole in a thin plastic sheet. Quarterly Journal of Mechanics and Applied Mathematics, 1(1), pp.103–124. Available at: https://doi.org/10.1093/qjmam/1.1.103.

Objavljeno
2017/12/21
Rubrika
Pregledni radovi