Numerical modeling of the impact of projectiles on metal structures

  • Dragoljub M. Spasić Uprava za logistiku (J-4) GS VS Beograd
Keywords: aircraft, aircraft structure, impact, impact damage, modeling, missile, bullet projectile, penetrator, projectile penetration, penetration, ballistic protection,

Abstract


This paper describes the numerical modeling of impact damage caused by impacts of projectiles on metal structures and the experimental results of impacts of projectiles of different shapes on metal structures. The experiments were carried out by the impact of projectiles on metal barriers of steel and aluminum of different thicknesses with the change in the impact speed of projectiles. In order to make the effects of experimental impact simulations as close as possible to real ones, the missile impacts are varied to match the average and limit speeds of impacts of projectiles that break obstacles. The obtained experimental results coincided well with the real effects on metallic obstacles and similar conducted tests from foreign literature.

References

Anderson, C.E., 1987. An overview of the theory of hydrocodes. International Journal of Impact Engineering, 5(1-4), pp.33-59. Available at: https://doi.org/10.1016/0734-743X(87)90029-7.

Anderson, C.E., Cox, P.A., Johnson, G.R. & Maudlin, P.J., 1994. A constitutive formulation for anisotropic materials suitable for wave propagation computer programs—II. Computational Mechanics, 15(3), pp.201-223. Available at: https://doi.org/10.1007/BF00375030.

Anderson, T.A., 2005. An investigation of SDOF models for large mass impact on sandwich composites. Composites Part B: Engineering, 36(2), pp.135-142. Available at: https://doi.org/10.1016/j.compositesb.2004.05.002.

Backman, M.E. & Goldsmith, W., 1978. The mechanics of penetration of projectiles into targets. International Journal of Engineering Science, 16(1), pp.1-99. Available at: https://doi.org/10.1016/0020-7225(78)90002-2.

Borvik, T., Hopperstad, O.S., Langseth, M. & Malo, K.A., 2003. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. International Journal of Impact Engineering, 28(4), pp.413-464. Available at: https://doi.org/10.1016/S0734-743X(02)00072-6.

Borvik, T., Clausen, A.H., Hopperstad, O.S. & Langseth, M., 2004. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles: Experimental study. International Journal of Impact Engineering, 30(4), pp.367-384. Available at: https://doi.org/10.1016/S0734-743X(03)00072-1.

Clausen, A.H., Borvik, T., Hopperstad, O.S. & Benallal, A., 2004. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering, 364(1-2), pp.260-272. Available at: https://doi.org/10.1016/j.msea.2003.08.027.

Dey, S., 2004. High-strength steel plates subjected to projectile impact: An experimental and numerical study, Ph.D. thesis, Norwegian University of Science and Technology, ISBN 82-471-6282-2.

Gingold, R.A. & Monaghan, J.J., 1977. Smoothed particle hydrodynamics: Theory and application to nonspherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), pp.375-389. Available at: https://doi.org/10.1093/mnras/181.3.375.

Johnson, G.R. & Cook, W.H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), pp.31-48. Available at: https://doi.org/10.1016/0013-7944(85)90052-9.

Lee, M. & Yoo, Y.H., 2001. Analysis of ceramic/metal armour system. International Journal of Impact Engineering, 25(9), pp.819-829. Available at: https://doi.org/10.1016/S0734-743X(01)00025-2.

Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82, pp.1013-1024. Available at: https://doi.org/10.1086/112164.

Ravid, M. & Bodner, S.R., 1983. Dynamic perforation of viscoplastic plates by rigid projectiles. International Journal of Engineering Science, 21(6), pp.577-591. Available at: https://doi.org/10.1016/0020-7225(83)90105-2.

Rosenberg, Z. & Tsaliah, J., 1990. Applying Tate's model for the interaction of long rod projectiles with ceramic targets. International Journal of Impact Engineering, 9(2), pp.247-251. Available at: https://doi.org/10.1016/0734-743X(90)90016-O.

Rosenberg, Z. & Yeshurun, Y., 1988. The relation between ballistic efficiency andcompressive strength of ceramic tiles. International Journal of Impact Engineering, 7(3), pp.357-362. Available at: https://doi.org/10.1016/0734-743X(88)90035-8.

Spasić, D., 2015. Modelovanje udarnih oštećenja vazduhoplovnih struktura, Ph.D. thesis, University in Belgrade: Faculty of Mechanical Engineering (in Serbian).

Taylor, G.I., 1948. The formation and enlargement of a circular hole in a thin plastic sheet. Quarterly Journal of Mechanics and Applied Mathematics, 1(1), pp.103–124. Available at: https://doi.org/10.1093/qjmam/1.1.103.

Published
2017/12/21
Section
Review Papers