Properties of the coating deposited with the diffusion of Mo&O2 oxidized powder using the APS process
Abstract
Powder Mo&O2 has an important role in the production of coatings with increased resistance to slide in conditions without the use of lubricants. Mo&O2 coatings have the low coefficient of friction and good abrasion characteristics in mechanical stresses. For the purpose of producing coatings of high hardness, Mo&O2 powder is plasma deposited with optimal parameters. The surface shape of oxide powder particles and the coating fracture surface are analysed by SEM, and the microstructure of layers is examined by light microscopy. The coating microstructure consists of Mo lamellae and MoO3 and MoO2 primary oxide thin films, which surround the Mo lamellae. The analysis of the obtained results showed that the Mo&O2 coating layers with the diffusion oxidized Mo particles have such a structure and mechanical characteristics which enable its application in working tools under the conditions of wear and sliding friction without lubricants.
References
Chen, D., Jordan, E., & Gell, M., 2007. Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surface & Coatings Technology, 202, pp.2132-2138. Available at: http://dx.doi.org/10.1016/j.surfcoat.2007.08.077.
Jullien, C., Khelfa, A., Hussain, O.M. and Nazri, G.A., 1995. Synthesis and characterization of flash-evaporated MoO3 thin films. Journal of Crystal Growth, 156(3), p.235. Available at: http://dx.doi.org/10.1016/0022-0248(95)00269-3.
Lyo, I.W., Ahn, H.S., Lim, D.S., 2003. Microstructure and tribological properties of plasmasprayed chromium oxide-molybdenum oxide composite coatings. Surface & Coatings Technology 163, pp.413-421. Available at: http://dx.doi.org/10.1016/S0257-8972(02)00613-8.
Modi, S.C., Calla, E., 2001. A study of high-velocity combustion wire molybdenum coatings. Journal of Thermal spray technology, 2001, 10(3), pp. 480-486. Available at: http://dx.doi.org/10.1361/105996301770349259.
Mrdak, M., Kakaš, D., Pović, Đ., 2005. Characterisation of APS-Mo wear resistant coatings, pp.235-239. In: BALKANTRIB '05, 5th International conference on tribology, Serbia, Kragujevac, 15-18.
Mrdak, M., 2016a. Properties of the ZrO2MgO/MgZrO3NiCr/NiCr triple-layer thermal barrier coating deposited by the atmospheric plasma spray process. Vojnotehnički glasnik / Military Technical Courier, 64(2), pp.411-430. Available at: http://dx.doi.org/10.5937/vojtehg64-9612.
Mrdak, M.R., 2016b. Characterization of Cu10wt.%Al intermetallic coatings applied by the atmospheric plasma spraying process. Vojnotehnički glasnik / Military Technical Courier, 64(4), pp. 949-965. Available at: http://dx.doi.org/10.5937/vojtehg64-10688.
Salhi, Z., Klein, D., Gougeon, P., Coddet, C., 2005. Development of coating by thermal plasma spraying under very low-pressure condition <1 mbar. Vacuum, 77(2), pp.145–150. Available at: http://dx.doi.org/10.1016/j.vacuum.2004.08.013.
Solak, N., Ustel, F., Urgen, M., Aydin, S., Cakir, A.F., 2003. Oxidation behavior of molybdenum nitride coatings, Surface & Coatings Technology 174, pp.713-719. Available at: http://dx.doi.org/10.1016/S0257-8972(03)00702-3.
Suszko, T., Gulbinski, W., Jagielski, J., 2005. The role of surface oxidation in friction processes on molybdenum nitride thin films. Surface & Coatings Technology, 194(2-3), pp.319-324. Available at: http://dx.doi.org/10.1016/j.surfcoat.2004.07.119.
Turbojet Engine – Standard Practices Manual PN 582005, 2002. Pratt & Whitney, East Hartford, USA.
Vardelle, M., Vardelle, A. and Leger, A.C., 1994. Influence of particle parameters at impact on splat formation and solidification in plasma spraying processes. Journal Thermal Spray Technology, 4, pp.50–58. Available at: http://dx.doi.org/10.1007/BF02648528.
Vencl, A., Arostegui, S., Favaro, G., Zivic, F., Mrdak, M., Mitrović, S., Popovic, V., 2011. Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections. Tribology International, 44(11), pp.1281-1288. Available at: http://dx.doi.org/10.1016/j.triboint.2011.04.002.
Yongqing, F., Jun, W., Andrew, W., 2000. Some considerations on the mitigation of fretting damage by the application of surface-modification technologies. Journal of Materials Processing Technology, 99(1-3), pp.231-245. Available at: http://dx.doi.org/10.1016/S0924-0136(99)00429-X.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).