Extensions of the Banach contraction principle in multiplicative metric spaces
Abstract
In this paper, we have proven several generalizations of the Banach contraction principle for multiplicative metric spaces. We have also derived the Cantor intersection theorem in the setup of multiplicative metric spaces. Non-trivial supporting examples are also given.
References
Banach, S., 1922. Sur les opérations dans les ensembles abstraits et leur application aux équations integrals. Fundamenta Mathematicae, 3(1), pp.133-181.
Bashirov, A.E., Kurpnar, E.M., & Ozyapc, A., 2008. Multiplicative calculus and its applications. J. Math. Analy. App, 337, pp.36-48. Available at: http://dx.doi.org/10.1016/j.jmaa.2007.03.081.
Boyd, D.W., & Wong, J.S.W., 1969. On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), pp.458-466. Available at: http://dx.doi.org/10.2307/2035677.
Dugundji, J., & Granas, A., 1982. Fixed Point Theory.Warszawa: Polish Academic Publishers. 1.
Hadžić, O. & Pap, E., 2001. Fixed point theory in PM spaces, Kluwer Academic Publishers, Dordrecht.
Hitzler, P., 2001. Generalized Metrics and Topology in Logic Programming Semantics. National University of Ireland - University College Cork. Ph.D. The-sis.
Hxiaoju, H., Songmand, M., & Chen, D., 2014. Common fixed points for weak commutative mappings on a multiplicative metric space. Fixed Point Theory and Applications, pp.20-48. Available at: http://dx.doi.org/10.1186/1687-1812-2014-48.
Jain, Shobha, Jain, Shishir, & Jain, L.B., 2012. On Banach contraction principle in a cone metric space. J. Nonlinear Sci. Appl., 5, pp.252-258.
Matthews, S.G., 1994. Partial metric topology, 183-197. In: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci., 728.
Mustafa, Z., Huang, H., Radenović, S., 2016. Some remarks on the paper “Some fixed point generalizations are not real generalizations”. J. Adv. Math. Stud. (9), pp.110-116.
Őzavsar, M., & Cevikel, A.C., 2012. Fixed point of multiplicative contraction mappings on multiplicative metric space. arXiv: 1205. 5131v1 [matn. GN].
Rad, G.S., Radenović, S., Dolićanin-Dekić, D., A shorter and simple approach to study fixed point results via b-simulation functions, to appear in Iranian Journal of Mathematical Sciences and Informatics.
Radenović,S., Chandok, S., Shatanawi, W., 2016. Some cyclic fixed point results for contractive mappings. University Though, Publication in Nature Sciences, 6(2), pp.38-40. Available at: http://dx.doi.org/10.5937/univtho6-11813.
Radenović, S., Dosenovič, T., Osturk, V., Dolićanin, Ć., nd, to appear in J.Fixed Point Theory Appl.A note on the paper “Integral equations with new admissibility types in b-metric spaces”.
Shatanawia, W., & Nashine, H.K., 2012. A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space. J. Nonlinear Sci. Appl., 5, pp.37-43.
Suzuki, T., 2008. A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(5), pp.1861-1869.
Zeyada, F.M., & et al., 2005. A Generalization of Fixed Point Theorem Due to Hitzler and Seda in Dislocated Quasi Metric Space. Arabian j. sci. Engg, 31, pp.111-114.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).