Constructions of squaring the circle, doubling the cube and angle trisection
Abstract
The constructions of three classical Greek problems (squaring the circle, doubling the cube and angle trisection) using only a ruler and a compass are considered unsolvable. The aim of this article is to explain the original methods of construction of the above-mentioned problems, which is something new in geometry. For the construction of squaring the circle and doubling the cube the Thales' theorem of proportional lengths has been used, whereas the angle trisection relies on a rotation of the unit circle in the Cartesian coordinate system and the axioms of angle measurement. The constructions are not related to the precise drawing figures in practice, but the intention is to find a theoretical solution, by using a ruler and a compass, under the assumption that the above-mentioned instruments are perfectly precise.
References
Courant, R., Robbins, H., 1973. What is Mathematics? An Elementary Approach to Ideas and Methods. Oxford University Press, London.
Dolićanin, Ć., 1984. Маthematics. Institute for Textbooks and Educational Materials, Priština.
Ostojić, О., 1980. Theoretical Basis of Initial Mathematics Teaching, Handbook for Math Teachers, Republic Institute for the Improvement of Education, Titograd.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).