Evaluation of positional accuracy of digital topographic maps at scale 1:25 000 (DTM25) on the basis of STANAG 2215 standard

  • Siniša M. Drobnjak Military Geographical Institute, Belgrade
  • Branko S. Božić Faculty of Civil Engenering, University of Belgrade, Belgrade
Keywords: Positional accuracy, STANAG 2215 standard, Digital topographic maps, Military Geographical Institute,

Abstract


The paper describes the results of the positional accuracy assessment of digital topographic maps at scale 1: 25 000 produced by the Serbian Military Geographic Institute (MGI). The test for the horizontal and vertical accuracy compliance of map sheets is done by comparing the planimetric and height coordinates of the ground points to the coordinates of the same points as determined by a check survey of higher accuracy. In this research STANAG 2215 standard was used and the methodology of its use is discussed in detail. The results of positional accuracy assessment for the digital topographic maps at scale 1:25 000 produced by the Military Geographic Institute have confirmed the highest level of accuracy defined by STANAG 2215 standard.

 

Author Biographies

Siniša M. Drobnjak, Military Geographical Institute, Belgrade
senior researcher in Departmant for survey
Branko S. Božić, Faculty of Civil Engenering, University of Belgrade, Belgrade
full professor, dean of Faculty

References

Afonso, A., Dias, R. & Teodoro, R. 2006. IGeoE: Positional quality control in the 1/25000 cartography. In: 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon. 5 ato 7 de July 2006.

Ariza López, F.J. & Atkinson Gordo, A.D. 2008. Analysis of some positional accuracy assessment methodologies. Journal of Surveying Engineering, 134(2), pp.45-54. Available at: https://doi.org/10.1061/(ASCE)0733-9453(2008)134:2(45)

Ariza-López, F.J., Mozas-Calvache, A.T., Ureña-Cámara, M.A., Alba-Fernández, V., García-Balboa, J.L., Rodríguez-Avi, J. & Ruiz-Lendínez, J.J. 2011. Sample size influence on line-based positional assessment methods for road data. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), pp.708-719. Available at: https://doi.org/10.1016/j.isprsjprs.2011.06.003.

Bozic, B. & Radojcic, S., 2011. Horizontal Accuracy of 1:50 000 Digital Topographic Maps. Survey Review, 43(319), pp.94–104. Available at: http://dx.doi.org/10.1179/003962611x12894696204740.

Congalton, R.G. & Plourde, L. 2002. Manual of geospatial science and technology. Chapter 21 - Quality assurance and accuracy assessment of information derived from remotely sensed data, pp.349-363. [e-book]. London and New York: CRC Press. Available at: https://doi.org/10.1201/9780203305928.ch21. Accessed: 20 June 2017.

Devillers, R. & Jeansoulin, R. 2010. Fundamentals of spatial data quality. Chapter 2 - Spatial Data Quality: Concepts. [e-book]. London: ISTE. Available at: http://dx.doi.org/10.1002/9780470612156.ch2. Accessed: 20 June 2017.

Drobnjak, S., Radojčić, S. & Božić, B. 2014. Primena ISO 19157 standarda u tehnološkom procesu izrade digitalnih topografskih karata. Tehnika, 69(6), pp. 931-937 (in Serbian). Available at: http://dx.doi.org/10.5937/tehnika1406931D.

Drobnjak, S., Sekulović, D., Amović, M., Gigović, Lj. & Regodić, M., 2016. Central geospatial database analysis of the quality of road infrastructure data. Geodetski vestnik, 60(2), pp.269-284. Available at: http://dx.doi.org/ 10.15292/geodetski-vestnik.2016.02.269-284.

Drummond, J., 1995. Elements of Spatial Data Quality. Chapter 3 - Positional accuracy, pp.31-58. [e-book]. Elsevier. Available at: http://dx.doi.org/10.1016/b978-0-08-042432-3.50010-0.

-Esri ArcGIS, Positional Accuracy Assessment Tool Help. Redlands, CA, USA. [Internet]. Available at: http://desktop.arcgis.com/en/arcmap/latest/extensions/data-reviewer/what-is-positional-accuracy-assessment.htm. Accessed: 24 March 2017.

Goodchild, M.F. & Hunter, G.J. 1997. A simple positional accuracy measure for linear features. International Journal of Geographical Information Science, 11(3), pp.299–306. Available at: http://dx.doi.org/10.1080/136588197242419.

-NATO, 2002. Standardization Agreement (STANAG) 2215: Evaluation of Land Maps, Aeronautical Charts and Digital Topographic Data, 6th ed. Brussels: NATO Standardization Agency.

Petrovič, D. 2006. Ocena kakovosti državne topografske karte v merilu 1: 50 000. Geodetski vestnik, 50(2), pp.187-200 (in Slovenian). Available at: http://www.geodetski-vestnik.com/50/2/gv50-2_187-200.pdf.

Skidmore, A.K. and Turner, B.J., 1992. Map accuracy assessment using line intersect sampling. Photogrammetric Engineering and Remote Sensing, 58(10), pp.1453-1457. Available at: https://www.asprs.org/wp-content/uploads/pers/1992journal/oct/1992_oct_1453-1457.pdf

Stanislawski, L.V., Dewitt, B.A. and Shrestha, R.L., 1996. Estimating positional accuracy of data layers within a GIS through error propagation. Photogrammetric Engineering and Remote Sensing, 62(4), pp.429-433. Available at: https://pdfs.semanticscholar.org/9097/a7d91741c65d3a18d6e1c38dccc13bf0cf9a.pdf.

Tveite, H. 1999. An accuracy assessment method for geographical line data sets based on buffering. International Journal of Geographical Information Science, 13(1), pp.27–47. Available at: http://dx.doi.org/10.1080/136588199241445.

Zandbergen, P.A., 2008. Positional Accuracy of Spatial Data: Non-Normal Distributions and a Critique of the National Standard for Spatial Data Accuracy. Transactions in GIS, 12(1), pp.103–130. Available at: http://dx.doi.org/10.1111/j.1467-9671.2008.01088.x.

Published
2017/12/21
Section
Review Papers