Contractive conditions in b-metric spaces
Abstract
The purpose of this paper is to consider various contractive conditions in b-metric spaces which have been recently published. Our results improve and complement many recent results from this field. Using the recently obtained result by R. Miculescu and A. Mihail (Miculescu & Michail, 2017, pp.1-11) the authors of this article show that the proofs of the majority of known results in the context of b-metric spaces can be shortened.
References
Abbas, M., Chema, I.Z., Razani, A., 2016. Existence of common fixed point for b-metric rational type contraction. Filomat, 30(6), pp.1413-1429. Available at: http://dx.doi.org/10.2298/FIL1606413A.
Aghajani, A., Abbas, M., Roshan, J.R., 2014. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca, 64(4), pp.941-960. Available at: https://doi.org/10.2478/s12175-014-0250-6
Allahyar, R., Arab, R., Haghighi, A.S., 2014. A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations. J. Inequal. Appl., 2014:355. Available at: https://doi.org/10.1186/1029-242X-2014-355.
Ansari, A., Razani, A., Hussain, N., 2017. Fixed and coincidence points for hybrid rational Geraghty contractive mappings in ordered b-metric spaces. Int. J. Nonlinear Anal. Appl., 8(1), pp.315-329. Available at: http://ijnaa.semnan.ac.ir/article_453.html.
Banach, S., 1922. Sur les opérations dans les ensembles abstraits et leur application aux équations integrals. Fundamenta Mathematicae, 3(1), pp.133-181.
Bakhtin, I.A., 1989. The contraction principle in quasimetric spaces. Funct. Anal., 30, pp.26-37.
Chandok, S., Huang, H., Radenović, S., 2017a. Some fixed point results for generalized F-Suzuki type contractions in b-metric spaces, to appear in Sahad Comunications in Mathematical Analysis.
Chandok, S.C., Jovanović, M.S., Radenović, S.N., 2017b. Ordered b-metric spaces and Geraghty type contractive mappings. Vojnotehnicki glasnik/Military Technical Courier, 65(2), pp.331–345. Available at: http://dx.doi.org/10.5937/vojtehg65-13266.
Czerwik, S., 1993. Contraction mappings in-metric spaces. Acta Math. Inform. Univ. Ostrav, 1, pp.5-11.
Demma, M. & Vetro, P., 2015. Picard sequence and fixed point results on b-metric spaces. J. Funct. Space, Vol.2015. Available at: http://dx.doi.org/10.1155/2015/189861.
Ding, H.S., Imdad, M., Radenović, S., Vujaković, J., 2016. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab J. Math. Sci, 22(2), pp.151-164. Available at: https://doi.org/10.1016/j.ajmsc.2015.05.003.
Dung, N.V. & Hang, V.T.L., 2016. On relaxions of contraction constants and Caristi’s theorem in b-metric spaces. J. Fixed Point Theory Appl., 18(2), pp.267-284. Available at: https://doi.org/10.1007/s11784-015-0273-9.
Harandi, A.A., 2014. Fixed point theory for quasi-contraction maps in b-metric spaces. Fixed Point Theory, 15(2), pp.351-358. Available at: http://www.math.ubbcluj.ro/~nodeacj/vol__15(2014)_no_2.php
Huang, H., Radenović, S., Vujaković, J., 2015. On some recent coincidence and immediate consequences in partially ordered b-metric spaces. Fixed Point Theory Appl., 2015:63. Available at: https://doi.org/10.1186/s13663-015-0308-3.
Jeong, G.S. & Rhoades, B.E., 2005, Maps for which Fixed Point Theory Appl., 6, 71-105, Available at: https://www.novapublishers.com/catalog/product_info.php?products_id=4068.
Jovanović, M., 2016. Contribution to the theory of abstract metric spaces, Ph.D. thesis, University of Belgrade, Faculty of Mathematics, Belgrade. Available at: http://nardus.mpn.gov.rs/handle/123456789/7975.
Kaushik, P., Kumar, S., Tas, K., 2017. A new class of contraction in b-metric spaes and applications. Abstr. Appl. Anal., Vol.2017. Available at: https://doi.org/10.1155/2017/9718535.
Khamsi, M. A. & Hussain, N., 2010. KKM mappings in metric type spaces. Nonlinear Anal., 73(9), pp.3123-3129. Available at: https://doi.org/10.1016/j.na.2010.06.084.
Khan, M. S., Swaleh, M., Sessa, S., 1984. Fixed point theorems by altering distances between the points. Bul. Aust. Math. Soc., 30(1), pp.1-9. Available at: https://doi.org/10.1017/S0004972700001659.
Kir, M. & Kiziltunc, H., 2013. On Some Well Known Fixed Point Theorems in b-Metric Spaces. Turkish J. Anal. Numb. Theory, 1(1), pp.13-16. Available at: http://dx.doi.org/10.12691/tjant-1-1-4.
Kumam, P., Sintunavarat, W., Sedghi, S., Shobkolaei, N., 2015. Common fixed point of two R-weakly commuting mappings in b-metric spaces. J. Funct. Space, Vol.2015. Available at: http://dx.doi.org/10.1155/2015/350840.
Latif, A., Parvaneh, V., Salimi, P., Al-Mazrooei, A.E., 2015. Various Suzuki type theorems in b-metric spaces. J. Nonlinear Sci. Appl. 8(4), pp.363-377.
Liu, L. & Gu, F., 2016. Common fixed point theorems for six self-maps in b-metric spaces with nonlinear contractive conditions. J. Nonlinear Sci. Appl., 9(12), pp.5909-5930.
Miculescu, R. & Mihail, A., 2017. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl, pp.1-11. Available at: https://doi.org/10.1007/s11784-016-0400-2.
Ozturk, V. & Ansari, A.H., 2017. Common fixed point theorems for mappings satisfying (E.A)-property via C-class functions in b-metric spaces. Appl. Gen. Topol., 18(1), pp.45-52. Available at: https://doi.org/10.4995/agt.2017.4573.
Parvaneh, V., Roshan, J. R., Radenović, S., 2013. Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations. Fixed Point Theory Appl., 2013:130. Available at: https://doi.org/10.1186/1687-1812-2013-130.
Petrusel, A., Petrucel, G., Yao, J. C., 2017. Fixed point and coincidence point theorems in b-metric spacs with applications. Appl. Anal. Discrete Math., 11(1), pp.199-215. Available at: https://doi.org/10.2298/AADM1701199P.
Piri, H. & Kumam, P., 2016. Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces. Fixed Point Theory Appl., 2016:90. Available at: https://doi.org/10.1186/s13663-016-0577-5.
Radenović, S., An, T.V., Quan, L.T., 2017a. Some coincidence point results for T-contraction mappings on partially ordered b-metric spaces and applications to integral equations. Nonlinear Analysis: Modelling and Control, 22(4), pp.545-565. Available at: https://doi.org/10.15388/NA.2017.4.9.
Radenović, S., Došenović, T., Ozturk, V., Dolićanin, Č., 2017b. A note on the paper: ”Nonlinear integral equations with new admissibility types in b-metric spaces”. J. Fixed Point Theory Appl. Available at: https://doi.org/10.1007/s11784-017-0416-2.
Rhoades, B. E., 1977. A comparison of various definitions of contractive mappings. Transaction of the American Mathematical Society, 226, pp.257-290. Available at: https://doi.org/10.2307/1997954.
Roshan, J.R., Parvaneh, V., Altun, I., 2014a. Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations. Appl. Math. Comput., 226, pp.725-737. Available at: https://doi.org/10.1016/j.amc.2013.10.043.
Roshan, J.R., Parvaneh, V., Radenović, S., Rajović, M., 2015. Some coincidence point results for generalized -weakly contractions in ordered b-metric spaces. Fixed Point Theory Appl., 2015: 68. Available at: https://doi.org/10.1186/s13663-015-0313-6.
Roshan, J.R., Parvaneh, V., Shobkolaei, N., Sedghi, S., Shatanawi, W., 2013. Common fixed points of almost generalized ( , ) contractive mappings in ordered b-metric spaces. Fixed Point Theory Appl., 2013:159. Available at: https://doi.org/10.1186/1687-1812-2013-159.
Roshan, J.R., Shobkolaei, N., Sedghi, S., Abbas, M., 2014b. Common fixed point of four maps in b-metric spaces. Hacett. J. Math. Stat., 43(4), pp.613-624.
Sarwar, M., Jamal, N., Li, Y., 2017. Coincidence point results via generalized weak contractions in partial b-metric spaces with application. J. Nonlinear Sci. Appl., 10(7), pp.3719-3731. Available at: http://dx.doi.org/10.22436/jnsa.010.07.29.
Sarwar, M. & Rahman, M.U., 2015. Fixed point theorems for Ciric’s and generalized contractions in b-metric spaces. Int. J. Anal. Appl., 7(1), pp.70-78.
Sintunavarat, W., 2016. Nonlinear integral equations with new admissibility types in b-metric spaces. J. Fixed Point Theory Appl., 18(2), pp.397-416. Available at: https://doi.org/10.1007/s11784-015-0276-6.
Zabihi, F. & Razani, A., 2014. Fixed point theorems for hybrid rational Geraghty contractive mappings in ordered b-metric spaces. J. Appl. Math., Vol.2014, Article ID 929821. Available at: http://dx.doi.org/10.1155/2014/929821.
Zhang, C., Li, S., Liu, B., 2017. Topological structures and the coincidence point of two mappings in cone b-metric spaces. J. Nonlinear Sci. Appl., 10(4), pp.1334-1344. Available at: http://dx.doi.org/10.22436/jnsa.010.04.05.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).