Strong enhancement of double Auger decay following plasmon excitation in C60
Abstract
One of the important characteristics of the C60 molecule is the collective response of its valence electron cloud to the electromagnetic radiation. This collective behavior gives rise to the occurrence of the giant dipole resonance (so called surface plasmon) in the absorption spectrum centered around 20 eV, which has also been analyzed theoretically by various authors. Concerning photoelectron emission, plasmonic excitation is characterized by a particular intensity behavior near the threshold. We present here a new series of the K-shell photoelectron spectra with particular emphasis on the qualitative analysis of all ionization with excitation and double ionization processes. Our measurements of the C60 plasmon excitation follow the so-called Thomas-Derrah law and are in good agreement with the corresponding behavior of satellite excitations in atoms such as neon.
References
Aksela, S., Nõmmiste, E., Jauhiainen, J., Kukk, E., Karvonen, J., Berry, H.G., Sorensen S.L., Aksela, H. 1995. Photofragmentation of C60 Molecules following Resonance Excitation and ionization near the C1s Edge. Physical Review Letters, 75(11), pp.2112-2115. Available at: https://doi.org/10.1103/physrevlett.75.2112.
Amusia, M.Ya., & Connerade, J.P. 2000. The theory of collective motion probed by light. Reports on Progress in Physics, 63(1), pp.41-70. Available at: https://doi.org/10.1088/0034-4885/63/1/202.
Benning, P.J., Poirier, D.M., Ohno, T.R., Chen, Y., Jost, M.B., Stepniak, F., Kroll, G.H., Weaver, J.H., Fure, J., & Smalley, R.E. 1992. C60 and C70 fullerenes and potassium fullerides. Physical Review B, 45(12), pp.6899-6913. Available at: https://doi.org/10.1103/physrevb.45.6899.
Bertsch, G.F., Bulgac, A., Tománek, D., & Wang, Y. 1991. Collective Plasmon excitations in C60 clusters. Physical Review Letters, 67(19), pp.2690-2693. Available at: https://doi.org/10.1103/physrevlett.67.2690.
Brühwiler, P.A., Maxwell, A.J., Rudolf, P., Gutleben, C.D., Wästberg, B., & Mårtensson, N. 1993. C1s autoionization study of electron hopping rates in solid C60. Physical Review Letters, 71(22), pp.3721-3724. Available at: https://doi.org/10.1103/physrevlett.71.3721.
Ekardt, W. 1984. Dynamical Polarizability of Small Metal Particles: Self-Consistent Spherical Jellium Background Model. Physical Review Letters, 52(21), pp.1925-1928. Available at: https://doi.org/10.1103/physrevlett.52.1925.
Electronic Properties of Fullerenes. Proceedings of the International Winterschool on Electronic Properties of Novel Materials. [e-book]. Edited by Kuzmany, H., Fink, J., Mehring, M., Roth, S. Tirol, March 6–13, 1993. Berlin: Springer Series in Solid-State Sciences, Vol.177. Available at: http://www.springer.com/gp/book/9783642850516. Accessed: 28 October 2017.
Hertel, I.V., Steger, H., de Vries, J., Weisser, B., Menzel, C., Kamke, B., & Kamke, W. 1992. Giant plasmon excitation in free C60 and C70 molecules studied by photoionization. Physical Review Letters, 68(6), pp.784-787. Available at: https://doi.org/10.1103/physrevlett.68.784.
Holland, D.M.P., Codling, K., Marr, G.V., & West, J.B. 1979. Multiple photoionisation in the rare gases from threshold to 280 eV. Journal of Physics B: Atomic and Molecular Physics, 12(15), pp.2465-2484. Available at: https://doi.org/10.1088/0022-3700/12/15/008.
Karvonen, J., Nõmmiste, E., Aksela, H., & Aksela, S. 1997. Photoion spectra of C60 molecules at resonance excitation and ionization energies near the C1s edge. The Journal of Chemical Physics, 106(9), pp.3466-3472. Available at: https://doi.org/10.1063/1.473442.
Korica, S., Rolles, D., Reinköster, A., Langer, B., Viefhaus, J., Cvejanović, S., & Becker, U. 2005. Partial cross sections and angular distributions of resonant and non-resonant valence photoemission of C60. Physical Review A, 71(1), pp.132031-132035. Available at: https://doi.org/10.1103/physreva.71.013203.
Krätschmer, W., Lamb, L.D., Fostiropoulos, K., & Huffman, D.R. 1990. Solid C60: a new form of carbon. Nature, 347(6291), pp.354-358. Available at: https://doi.org/10.1038/347354a0.
Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., & Smalley, R.E. 1985. C60: Buckminsterfullerene. Nature, 318(6042), pp.162-163. Available at: https://doi.org/10.1038/318162a0.
Krummacher, S., Biermann, M., Neeb, M., Liebsch, A., & Eberhardt, W. 1993. Close similarity of the electronic structure and electron correlation in gas-phase and solid C60. Physical Review B, 48(11), pp.8424-8429. Available at: https://doi.org/10.1103/physrevb.48.8424.
LeBrun, T., Berry, H.G., Cheng, S., Dunford, R.W., Esbensen, H., Gemmell, D.S., Kanter, E.P., & Bauer, W. 1994. Ionization and Multifragmentation of C60 by High-Energy, Highly Charged Xe Ions. Physical Review Letters, 72(25), pp.3965-3968. Available at: https://doi.org/10.1103/physrevlett.72.3965.
Leiro, J.A., Heinonen, M.H., Laiho, T., & Batirev, I.G. 2003. Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. Journal of Electron Spectroscopy and Related Phenomena, 128(2-3), pp.205-213. Available at: https://doi.org/10.1016/s0368-2048(02)00284-0.
Lichtenberger, D.L., Nebesny, K.W., Ray, C.D., Huffman, D.R., & Lamb, L.D. 1991. Valence and core photoelectron spectroscopy of C60, buckminsterfullerene. Chemical Physics Letters, 176(2), pp.203-208. Available at: https://doi.org/10.1016/0009-2614(91)90155-3.
Maxwell, A.J., Brühwiler, P.A., Nilsson, A., Mårtensson, N., & Rudolf, P. 1994. Photoemission, autoionization, and x-ray-absorption spectroscopy of ultrathin-film C60 on Au(110). Physical Review B, 49(15), pp.10717-10725. Available at: https://doi.org/10.1103/physrevb.49.10717.
Terminello, L.J., Shuh, D.K., Himpsel, F.J., Lapiano-Smith, D.A., Stöhr, J., Bethune, D.S., & Meijer, G. 1991. Unfilled orbitals of C60 and C70 from carbon K-shell X-ray absorption fine structure. Chemical Physics Letters, 182(5), pp.491-496. Available at: https://doi.org/10.1016/0009-2614(91)90113-n.
Thomas, T.D. 1984. Transition from Adiabatic to Sudden Excitation of Core Electrons. Physical Review Letters, 52(6), pp.417-420. Available at: https://doi.org/10.1103/physrevlett.52.417.
Wästberg, B., Lunell, S., Enkvist, C., Brühwiler, P.A., Maxwell, A.J., & Mårtensson, N. 1994. 1s x-ray-absorption spectroscopy of C60: The effects of screening and core-hole relaxation. Physical Review B, 50(17), pp.13031-13034. Available at: https://doi.org/10.1103/physrevb.50.13031.
Weaver, J.H., Martins, J.L., Komeda, T., Chen, Y., Ohno, T.R., Kroll, G.H., Troullier, N., Haufler, R.E., & Smalley, R.E. 1991. Electronic structure of solid C60: Experiment and theory. Physical Review Letters, 66(13), pp.1741-1744. Available at: https://doi.org/10.1103/physrevlett.66.1741.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).