Strong enhancement of double Auger decay following plasmon excitation in C60

  • Sanja Lj. Korica Univerzitet Union - Nikola Tesla, Fakultet za ekologiju i zastitu zivotne sredine, Cara Dusana 62-64 11000 Beograd
  • Axel Reinkoester Fritz-Haber-Institut der MPG, Berlin
  • Uwe Becker Fritz-Haber-Institut der MPG, Berlin
Keywords: molecular physics, photoelectron spectroscopy, plasmon excitation,

Abstract


One of the important characteristics of the C60 molecule is the collective response of its valence electron cloud to the electromagnetic radiation. This collective behavior gives rise to the occurrence of the giant dipole resonance (so called surface plasmon) in the absorption spectrum centered around 20 eV, which has also been analyzed theoretically by various authors. Concerning photoelectron emission, plasmonic excitation is characterized by a particular intensity behavior near the threshold. We present here a new series of the K-shell photoelectron spectra with particular emphasis on the qualitative analysis of all ionization with excitation and double ionization processes. Our measurements of the C60 plasmon excitation follow the so-called Thomas-Derrah law and are in good agreement with the corresponding behavior of satellite excitations in atoms such as neon.

Author Biographies

Sanja Lj. Korica, Univerzitet Union - Nikola Tesla, Fakultet za ekologiju i zastitu zivotne sredine, Cara Dusana 62-64 11000 Beograd
profesor fizike
Axel Reinkoester, Fritz-Haber-Institut der MPG, Berlin

Molecular Physics department,

post-doc

Uwe Becker, Fritz-Haber-Institut der MPG, Berlin

Molecular Physics Department,

professor

References

Aksela, S., Nõmmiste, E., Jauhiainen, J., Kukk, E., Karvonen, J., Berry, H.G., Sorensen S.L., Aksela, H. 1995. Photofragmentation of C60 Molecules following Resonance Excitation and ionization near the C1s Edge. Physical Review Letters, 75(11), pp.2112-2115. Available at: https://doi.org/10.1103/physrevlett.75.2112.

Amusia, M.Ya., & Connerade, J.P. 2000. The theory of collective motion probed by light. Reports on Progress in Physics, 63(1), pp.41-70. Available at: https://doi.org/10.1088/0034-4885/63/1/202.

Benning, P.J., Poirier, D.M., Ohno, T.R., Chen, Y., Jost, M.B., Stepniak, F., Kroll, G.H., Weaver, J.H., Fure, J., & Smalley, R.E. 1992. C60 and C70 fullerenes and potassium fullerides. Physical Review B, 45(12), pp.6899-6913. Available at: https://doi.org/10.1103/physrevb.45.6899.

Bertsch, G.F., Bulgac, A., Tománek, D., & Wang, Y. 1991. Collective Plasmon excitations in C60 clusters. Physical Review Letters, 67(19), pp.2690-2693. Available at: https://doi.org/10.1103/physrevlett.67.2690.

Brühwiler, P.A., Maxwell, A.J., Rudolf, P., Gutleben, C.D., Wästberg, B., & Mårtensson, N. 1993. C1s autoionization study of electron hopping rates in solid C60. Physical Review Letters, 71(22), pp.3721-3724. Available at: https://doi.org/10.1103/physrevlett.71.3721.

Ekardt, W. 1984. Dynamical Polarizability of Small Metal Particles: Self-Consistent Spherical Jellium Background Model. Physical Review Letters, 52(21), pp.1925-1928. Available at: https://doi.org/10.1103/physrevlett.52.1925.

Electronic Properties of Fullerenes. Proceedings of the International Winterschool on Electronic Properties of Novel Materials. [e-book]. Edited by Kuzmany, H., Fink, J., Mehring, M., Roth, S. Tirol, March 6–13, 1993. Berlin: Springer Series in Solid-State Sciences, Vol.177. Available at: http://www.springer.com/gp/book/9783642850516. Accessed: 28 October 2017.

Hertel, I.V., Steger, H., de Vries, J., Weisser, B., Menzel, C., Kamke, B., & Kamke, W. 1992. Giant plasmon excitation in free C60 and C70 molecules studied by photoionization. Physical Review Letters, 68(6), pp.784-787. Available at: https://doi.org/10.1103/physrevlett.68.784.

Holland, D.M.P., Codling, K., Marr, G.V., & West, J.B. 1979. Multiple photoionisation in the rare gases from threshold to 280 eV. Journal of Physics B: Atomic and Molecular Physics, 12(15), pp.2465-2484. Available at: https://doi.org/10.1088/0022-3700/12/15/008.

Karvonen, J., Nõmmiste, E., Aksela, H., & Aksela, S. 1997. Photoion spectra of C60 molecules at resonance excitation and ionization energies near the C1s edge. The Journal of Chemical Physics, 106(9), pp.3466-3472. Available at: https://doi.org/10.1063/1.473442.

Korica, S., Rolles, D., Reinköster, A., Langer, B., Viefhaus, J., Cvejanović, S., & Becker, U. 2005. Partial cross sections and angular distributions of resonant and non-resonant valence photoemission of C60. Physical Review A, 71(1), pp.132031-132035. Available at: https://doi.org/10.1103/physreva.71.013203.

Krätschmer, W., Lamb, L.D., Fostiropoulos, K., & Huffman, D.R. 1990. Solid C60: a new form of carbon. Nature, 347(6291), pp.354-358. Available at: https://doi.org/10.1038/347354a0.

Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., & Smalley, R.E. 1985. C60: Buckminsterfullerene. Nature, 318(6042), pp.162-163. Available at: https://doi.org/10.1038/318162a0.

Krummacher, S., Biermann, M., Neeb, M., Liebsch, A., & Eberhardt, W. 1993. Close similarity of the electronic structure and electron correlation in gas-phase and solid C60. Physical Review B, 48(11), pp.8424-8429. Available at: https://doi.org/10.1103/physrevb.48.8424.

LeBrun, T., Berry, H.G., Cheng, S., Dunford, R.W., Esbensen, H., Gemmell, D.S., Kanter, E.P., & Bauer, W. 1994. Ionization and Multifragmentation of C60 by High-Energy, Highly Charged Xe Ions. Physical Review Letters, 72(25), pp.3965-3968. Available at: https://doi.org/10.1103/physrevlett.72.3965.

Leiro, J.A., Heinonen, M.H., Laiho, T., & Batirev, I.G. 2003. Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. Journal of Electron Spectroscopy and Related Phenomena, 128(2-3), pp.205-213. Available at: https://doi.org/10.1016/s0368-2048(02)00284-0.

Lichtenberger, D.L., Nebesny, K.W., Ray, C.D., Huffman, D.R., & Lamb, L.D. 1991. Valence and core photoelectron spectroscopy of C60, buckminsterfullerene. Chemical Physics Letters, 176(2), pp.203-208. Available at: https://doi.org/10.1016/0009-2614(91)90155-3.

Maxwell, A.J., Brühwiler, P.A., Nilsson, A., Mårtensson, N., & Rudolf, P. 1994. Photoemission, autoionization, and x-ray-absorption spectroscopy of ultrathin-film C60 on Au(110). Physical Review B, 49(15), pp.10717-10725. Available at: https://doi.org/10.1103/physrevb.49.10717.

Terminello, L.J., Shuh, D.K., Himpsel, F.J., Lapiano-Smith, D.A., Stöhr, J., Bethune, D.S., & Meijer, G. 1991. Unfilled orbitals of C60 and C70 from carbon K-shell X-ray absorption fine structure. Chemical Physics Letters, 182(5), pp.491-496. Available at: https://doi.org/10.1016/0009-2614(91)90113-n.

Thomas, T.D. 1984. Transition from Adiabatic to Sudden Excitation of Core Electrons. Physical Review Letters, 52(6), pp.417-420. Available at: https://doi.org/10.1103/physrevlett.52.417.

Wästberg, B., Lunell, S., Enkvist, C., Brühwiler, P.A., Maxwell, A.J., & Mårtensson, N. 1994. 1s x-ray-absorption spectroscopy of C60: The effects of screening and core-hole relaxation. Physical Review B, 50(17), pp.13031-13034. Available at: https://doi.org/10.1103/physrevb.50.13031.

Weaver, J.H., Martins, J.L., Komeda, T., Chen, Y., Ohno, T.R., Kroll, G.H., Troullier, N., Haufler, R.E., & Smalley, R.E. 1991. Electronic structure of solid C60: Experiment and theory. Physical Review Letters, 66(13), pp.1741-1744. Available at: https://doi.org/10.1103/physrevlett.66.1741.

Published
2018/06/15
Section
Original Scientific Papers