Computer simulation of the 7.62mm TT pistol external ballistics using two different air resistance laws

  • Vadim L. Khaikov independent researcher
Keywords: computer simulation, external ballistics, TT pistol, air resistance law, drag function, the 1943 year law, bullet trajectory, spline, Mathcad,

Abstract


A description of a pistol (rifle) cartridge often involves two ballistic coefficients that characterize its ballistic qualities with respect to various air resistance laws (ARLs). How close are the obtained ballistic trajectories with varied ARL specificationsand what are the differences between them? How to evaluate ballistics if the ARLs are to be expressed in various mathematical forms? In this paper, the evaluation of external ballistics trajectories is given for two ARLs (the law brought in 1943 and the Siacci law). All the obtained results relate to the TT pistol with 7.62 × 25mm Tokarev cartridge.The paper also presents the answer to the question: how to calculate the ballistic trajectory if the ARL is expressed as a rational function,  piecewise function or spline.  For the 1943 ARL, a graphical interpretation of the function Cd (i, v) in the form of a surface is shown. This paper shows that, due to the selection of ballistic coefficients, it is possible to obtain sufficiently similar form of ballistic trajectories. A method of graphical comparison of external ballistic parameters is presented as well as the mathematical tools for quantitative analysis of a shape of ballistic curves.The difference between the two trajectories is proposed to be estimated using a relative error in regard to а selected ballistic parameter. Computer simulation considered for the 1943 and Siacci ARLs for the 7.62×25mm Tokarev cartridge indicates that the profiles of the function of instantaneous projectile velocity vs time of flight (TOF) had the greatest non-coincidence in relation to other ballistic parameters (e.g. horizontal range, height of the trajectory, etc.) The obtained maximum of the relative error was 0.8%. Its magnitude localizes at the point of impact.

References

-Arndt Brünner. 2018. Rechner für kubische Splines. [Internet]. Available at: http://www.arndt-bruenner.de/mathe/scripts/kubspline1.htm (in German). Accessed: 07.03.2018.

Bogdanovich, B. 2012. Yugoslavskiy TT po imeni "Tetejats". Oruzhiye, 10 (oktyabr'), pp.42-56 (in Russian). (In the original: Богданович, Б. 2012. Югославский ТТ по имени "Тетеjaц". Оружие. 10 (октябрь). С. 42-56).

Faraponov, V.V., Bimatov, V.I., Savkina, N.V., & Khristenko, Yu.F. 2017. Praktikum po aeroballistike. Tomsk: STT Publishing (in Russian). (In the original: Фарапонов, В.В., Биматов, В.И., Савкина, Н.В., Христенко, Ю.Ф. 2017. Практикум по аэробаллистике. Томск: STT Publishing).

http://ballistics.eu/index.html. Accessed: 07.03.2018.

https://forum.guns.ru/forummessage/91/492765.html (in Russian). Accessed: 07.03.2018.

http://popgun.ru/viewtopic.php?f=159&t=213919&start=10 (in Russian). Accessed: 07.03.2018.

Jankových, R. 2012. Přechodová a vnější balistika. [Internet]. Available at: http://www.fsiforum.cz/upload/soubory/databaze-predmetu/0HZ/10%20Hlavňové%20zbraně%20Přechodová%20a%20vnější%20balistika.pdf (in Czech). Accessed: 07.03.2018.

Khaikov, V. 2017. Review of mathematical formulas for the air resistance law of the 1943 year. Part 1. Electronic Information Systems, 4(15), pp.74-90 (in Russian). (In the original: Хайков, В. 2017. Обзор аналитических выражений закона сопротивления воздуха 1943 г. Часть 1. Электронные информационные системы 4(15). C. 74-90).

Khaikov, V. 2018. Mathematical modeling and computer simulation of the tube artillery external ballistics basic problem by means of the Mathcad software. Vojnotehnički glasnik / Military Technical Courier, 66(2), pp.281-303. Available at: https://doi.org/10.5937/vojtehg66-15328.

Kirillov, V.M. 1963. Osnovaniya ustroystva i proyektirovaniya strelkovogo oruzhiya. Penza: Penzenskoye Vyssheye Artilleriyskoye Inzhenernoye Uchilishche (in Russian). (In the original: Кириллов, В.М. 1963. Основания устройства и проектирования стрелкового оружия. Пенза: Пензенское Высшее Артиллерийское Инженерное Училище).

Kir'yanov, D.V. 2012. Mathcad 15/Mathcad Prime 1.0. Sankt-Peterburg: BKhV (in Russian). (In the original: Кирьянов, Д.В. 2012. Mathcad 15/Mathcad Prime 1.0. Cанкт-Петербург: БХВ).

Konovalov, A.A., & Nikolayev, Yu.V. 1979. Vneshnyaya ballistika. Moscow: Tsentral'nyy Nauchno-Issledovatel'skiy Institut Informatsii (in Russian). (In the original: Коновалов, А.А., Николаев, Ю.В. 1979. Внешняя баллистика. Mосква: Центральный Научно-Исследовательский Институт Информации).

Kozlitin, I.A., & Omelyanov, A.S. 2016. A method for smooth approximation of drag functions. Mathematical Models and Computer Simulations, 28(10), pp.23-32 (in Russian). (In the original: Козлитин, И.А., Омельянов, А.С. 2016. Метод построения гладкой аппроксимации законов сопротивления. Математическое моделирование, 28(10). C. 23-32).

Mori, E. 2013. Balistica Pratica. Ilmiolibro Self Publishing.

Regodić, D. 2006. Spoljna balistika. Belgrade: Vojna akademija (in Serbian).

Semikolenov, N.P., Bondarenko, F.G., & Krasner, N.Y. 1971. Principles of small unit weapons firing. Charlottesville, US: Army Foreign Science and Technology Center. Trans. from Russian.

Shapiro, Ya.M. 1946. Vneshnyaya ballistika. Moscow: Gosudarstvennoye izdatel'stvo oboronnoy promyshlennosti (in Russian). (In the original: Шапиро, Я.М. 1946. Внешняя баллистика. Москва: Государственное издательство оборонной промышленности).

Vodorezov, Yu.G. 2017. Teoriya i praktika strel'by iz nareznogo dlinnostvol'nogo strelkovogo oruzhiya. Chast' 1. Moscow: Moskovskiy Gosudarstvennyy Tekhnicheskiy Universitet (in Russian). (In the original: Водорезов, Ю.Г. 2017. Теория и практика стрельбы из нарезного длинноствольного стрелкового оружия. Часть 1.).

Published
2018/06/15
Section
Original Scientific Papers