Leaching of rare earth elements with sulfuric acid from bastnasite ores

  • Srećko R. Stopić RWTH Aachen University, Faculty for Georesourcen and Materials Engineering, IME Process Metallurgy and Metal Recycling, Aachen
  • Bernd G. Friedrich RWTH Aachen University, Faculty for Georesourcen and Materials Engineering, IME Process Metallurgy and Metal Recycling, Aachen
Keywords: rare earth elements, hydrometallurgy, bastnasite, sulfuric acid,

Abstract


Dissolution of rare earth elements from bastnasite ores was studied using sulfuric acid at the atmospheric pressure. The one step strategy with sulfuric acid was studied further and the results showed that filtering difficulties do not happen for the chosen parameter combinations. Furthermore, the best parameter combinations were those with low temperatures and low acid concentrations. All in all, direct leaching is a simple process that uses the cheapest acid on the market and offers good leaching recoveries. Attention should be given to the formation of gel, especially when taking the process to the large scale, and the subsequent elimination of Ca from the leachate.

Author Biography

Srećko R. Stopić, RWTH Aachen University, Faculty for Georesourcen and Materials Engineering, IME Process Metallurgy and Metal Recycling, Aachen

Dr.-Ing. tehnickih nauka

Metalurgija, naucni saradnik

References

Balomenos, E., Davris, P., Deady, E., Yang, J., Panias, D., Friedrich, B., Binnemans, K., Seisenbaeva, G., Dittrich, C., Kalvig, P., &Paspaliaris, I. 2017. The EURARE Project: Development of a Sustainable Exploitation Scheme for Europe’s Rare Earth Ore Deposits. Johnson Matthey Technology Review, 61(2), pp.142-153. Available at: https://doi.org/10.1595/205651317x695172.

Castor, B., James, B., & Hedrick, B. 2006. Rare Earth Elements. In J.E. Kogel, N.C. Trivedi, & J.M. Barker Eds., Industrial Minerals and Rocks, pp.769-792.

Chen, Z. 2011. Global rare earth resources and scenarios of future rare earth industry. Journal of Rare Earths, 29(1), pp.1-6. Available at: https://doi.org/10.1016/s1002-0721(10)60401-2.

Davris, P., Stopic, S., Balomenos, E., Panias, D., Paspaliaris, I., & Friedrich, B. 2017. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Minerals Engineering, 108, pp.115-122. Available at: https://doi.org/10.1016/j.mineng.2016.12.011.

Feng, X., Long, Z., Cui, D., Wang, L., Huang, X., & Zhang, G. 2013. Kinetics of rare earth leaching from roasted ore of bastnaesite with sulfuric acid. Transactions of Nonferrous Metals Society of China, 23(3), pp.849-854. Available at: https://doi.org/10.1016/s1003-6326(13)62538-8.

Gupta, C.K., & Krishnamurthy, N. 2005. Extractive Metallurgy of Rare Earths. Boca Raton, Fl: CRC Press. chapter 1. 2; ISBN 0415333407 9780415333405.

Hoshino, M., Sanematsu, K., & Watanabe, Y. 2016. REE Mineralogy and Resources. In Handbook on the physics and chemistry of rare earths.Elsevier BV, pp.129-291. Available at: https://doi.org/10.1016/bs.hpcre.2016.03.006.

Khaw, J.F.C., Lim, B.S., & Lim, L.E.N. 1995. Optimal design of neural networks using the Taguchi method. Neurocomputing, 7(3), pp.225-245. Available at: https://doi.org/10.1016/0925-2312(94)00013-i.

Ma, Y., Stopic, S., Gronen, L., Milivojevic, M., Obradovic, S., & Friedrich, B. 2018. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching. Metals, 8(4), p.267. Available at: https://doi.org/10.3390/met8040267.

Rare Earth Elements, British Geological Survey, Natural environment research council, center for sustainable mineral development, 2011. November, downloaded on November 24th 2013 from: https://www.bgs.ac.uk/downloads/start.cfm?id=1638.

Published
2018/09/03
Section
Original Scientific Papers