Mechanical properties and metallographic analysis of plasma spray APS - Ni5.5wt.%Al5wt.%Mo coatings

  • Mihailo R. Mrdak IMTEL komunikacije a.d.
Keywords: atmospheric plasma spraying (APS), microstructure, Ni5.5wt.%Al5wt.%Mo, microhardness, bond strength,

Abstract


This paper presents the testing of the mechanical and microstructural characteristics of atmospheric plasma spray (APS) coatings of Ni5.5wt.%Al5wt.%Mo composite powder. The aim of this study was to optimize powder feed (g/min) in order to deposit  NiAlMo coating layers with optimum mechanical and structural characteristics to worn aviation parts made of Ni alloy exposed to a combination of corrosion and wear. The microhardness of the deposited layers was tested using HV0.3 and tensile bond strength was tested by tensile testing. The morphology of powder particles was examined on a SEM (scanning electron microscope). The NiAlMo coating microstructure was examined on an optical microscope (OM). Fracture morphology of the top layer was tested on an electronic scanning microscope (SEM). It was found that the control of powder feed can result in coatings with good bond strength.

Author Biography

Mihailo R. Mrdak, IMTEL komunikacije a.d.
Doctor of Technical Sciences

References

Chen, J., Zhou, H., Zhao, X., Chen, J., An, Y., & Yan, F. 2015. Erratum to: Microstructural Characterization and Tribological Behavior of HVOF Sprayed NiMoAl Coating from 20 to 800 °C. Journal of Thermal Spray Technology, 24(3), pp.281-281. Available at: https://doi.org/10.1007/s11666-014-0193-z.

Conley, J., Fine, M., & Weertman, J. 1989. Effect of lattice disregistry variation on the late stage phase transformation behavior of precipitates in Ni-Al-Mo alloys. Acta Metallurgica, 37(4), pp.1251-1263. Available at: https://doi.org/10.1016/0001-6160(89)90119-3.

Ishak, M., & Takagi, H. 2012. The characteristics of unidirectional solidified Ni-Al-Mo alloys. Materialwissenschaft und Werkstofftechnik, 43(5), pp.416-420. Available at: https://doi.org/10.1002/mawe.201200975.

Lin, B., Huang, M., Zhao, L., Roy, A., Silberschmidt, V., Barnard, N., Whittaker, M., & McColvin, G. 2018. 3D DDD modelling of dislocation–precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation. Philosophical Magazine, 98(17), pp.1550-1575. Available at: https://doi.org/10.1080/14786435.2018.1447159.

Miracle, D.B., Lark, K.A., Srinivasan, V., & Lipsitt, H.A. 1984. Nickel-aluminum-molybdenum phase equilibria. Metallurgical Transactions A, 15(3), pp.481-486. Available at: https://doi.org/10.1007/bf02644971.

Mrdak, M. 2016. Plazma sprej procesi i svojstva zaštitnih prevlaka.Beograd: IHIS Techno experts d.o.o. (in Serbian).

Mrdak, M. 2018. Transfer of heat and speed of plasma particles to powder particles in the plasma spray process at atmospheric pressure. Vojnotehnički glasnik/Military Technical Courier, 66(2), pp.415-430. Available at: https://doi.org/10.5937/vojtehg66-12942.

-Oerlikon Metco. 2017. Material Product Data Sheet, Nickel – Aluminum – Molybdenum Thermal Spray Powders. DSMTS-0111.0. [online] Available at: file:///C:/Users/Intel/Downloads/DSMTS-0111.5_NiAlMo_Powders.pdf. Accessed: 10.05.2018.

-Pratt & Whitney. 2002. Turbojet Engine. Standard Practices Manual.East Hartford,USA: Pratt & Whitney. (PN 582005).

Rico, A., Rodríguez, J., & Otero, E. 2010. High Temperature Oxidation Behaviour of Nanostructured Alumina–Titania APS Coatings. Oxidation of Metals, 73(5-6), pp.531-550. Available at: https://doi.org/10.1007/s11085-010-9191-9.

Published
2019/06/12
Section
Original Scientific Papers