Characterization of NiO nanoparticles prepared using gelatin and a low-cost synthesis

  • Violeta N. Nikolić University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Theoretical Physics and Condensed Matter Physics
  • Martina D. Gilić University of Belgrade, Institute of Physics, Department of research in the field of electronic materials
  • Vojislav V. Spasojević University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Theoretical Physics and Condensed Matter Physics
Keywords: NiO, Diffraction measurements, Spectroscopy, Nanoparticles, Materials,

Abstract


Nanocomposite material containing NiO nanoparticles decorated on WO3 nanowires could be used for monitoring levels of H2S gas. The effectiveness of this material is mostly determined by NiO properties. The performed study presents the first stage in the preparation of modified NiO/WO3 nanocomposite material. In this article, NiO nanoparticles are prepared by a simple, low-cost method.The behavior of nano-sized NiO particles is probed by X-ray diffraction, Fourier transform Infrared Spectroscopy, Raman spectroscopy, and hysteretic measurement.

References

Alkilany, A.M., Nagaria, P.K., Hexel, C.R., Shaw, T.J., Murphy, C.J., & Wyatt, M.D. 2009. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small, 5(6), pp.701-708. Available at: https://doi.org/10.1002/smll.200801546.

Bahari Molla Mahaleh, Y., Sadrnezhaad, S.K., & Hosseini, D. 2008. NiO Nanoparticles Synthesis by Chemical Precipitation and Effect of Applied Surfactant on Distribution of Particle Size. Journal of Nanomaterials, 2(8), pp.1-5. Available at: https://doi.org/10.1155/2008/470595.

Balian, G., & Bowes, J.H. 1977. The Science and Technology of Gelatin, Ward, A.G., Courts, A., Eds.; Academic Press: London, UK.

Cheng, Y.T., Rodak, D.E., Wong, C.A., & Hayden, C.A. 2006. Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology, 17(5), pp.1359-1362. Available at: https://doi.org/10.1088/0957-4484/17/5/032.

Chiellini, E., Cinelli, P., Grillo Fernandes, E., Kenawy E.R.S., & Lazzeri, A. 2001. Gelatin-Based Blends and Composites. Morphological and Thermal Mechanical Characterization. Biomacromolecules, 2(1), pp.806-811. Available at: https://doi.org/10.1021/bm015519h.

Chuaynukul, K., Prodrpan, T., & Benjakul, S. 2014. Preparation, thermal properties and characteristics of gelatin molding compound resin. Res J. Chem. Environ. Sci, 2014, 2(1), pp.1-9. ISSN 2321-1040.

Cordoba-Torresi, S.I., Hugot-Le Goff, A., & Joiret, S. 1991. Electrochromic Behavior of Nickel Oxide Electrodes II. Identification of the Bleached State by Raman Spectroscopy and Nuclear Reactions. Journal of the Electrochemical Society, 138(6), pp.1554-1559. Available at: https://doi.org/10.1149/1.2085831.

Durmus, Z., Kavas, H., Baykal, A., Sozeri, H., Alpsoy, L., Çelik, S.Ü., & Toprak, M.S. 2011. Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. Journal of Alloys and Compounds, 509(5), pp.2555-2561. Available at: https://doi.org/10.1016/j.jallcom.2010.11.088.

Faust, C.B. 1997. Modern chemical techniques: An Essential Reference for Students and Teachers. Royal Society Of Chemistry, London, UK.

Fleck, M., & Bohaty, L. 2004. Three novel non-centrosymmetric compounds of glycine: glycine lithium sulfate, glycine nickel dichloride dihydrate and glycine zinc sulfate trihydrate, Acta Crystallographica Section C, 60(5), pp.291-295. Available at: https://doi.org/10.1107/S0108270104009825.

Harrington, W.F., & von Hippel, P.H., 1962. The structure of collagen and gelatin. Advances in Protein Chemistry, 16(1), pp.1-138. Available at: https://doi.org/10.1016/S0065-3233(08)60028-5.

Jagadeesh, D., Prashantha, K., Mithil Kumar Nayunigari N., & Maity, A. 2016. Effect of Gelatin Content on Potato Starch Green Composite Films. Indian Journal of Advances in Chemical Science, 4(4), pp.355-361.

Jana, N.R., Chen, Y. & Peng, X. 2004. Size-and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chemistry of materials, 16(20), pp.3931-3935. Available at: https://doi.org./10.1021/cm049221k.

Jeffrey, F.J. 2015. Manuals Combined: Navy Air Force And Army Occupational Health And Safety - Including Fall Protection And Scaffold Requirements. Department of the Navy Fall Protection Guide. Available at: http://www.public.navy.mil/navsafecen/Documents/OSH/FP/FALL_PROTECTION_GUIDE_MAY_15.pdf. Accessed: 05.05.2018.

Kamal, H., Elmaghraby, E.K., Ali, S.A., & Abdel-Hady, K. 2005. The electrochromic behavior of nickel oxide films sprayed at different preparative conditions. Thin solid films, 483(2), pp.330-339. Available at: https://doi.org/10.1016/j.tsf.2004.12.022.

Kapse, V.D., Ghosh, S.A., Chaudhari, G.N., & Raghuwanshi, F.C. 2008. Nanocrystalline In2O3-based H2S sensors operable at low temperatures. Talanta, 76(3), pp.610-616. Available at: https://doi.org/10.1016/j.talanta.2008.03.050.

Kossyrev, P.A., Yin, A., Cloutier, S.G., Cardimona, D.A., Huang, D., Alsing, P.M., & Xu, J. M. 2005. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Letters, 5(10), pp.1978-1981. Available at: https://doi.org/10.1021/nl0513535.

Lee, G., Cheng, Y., Varanasi, C.V., & Liu, J. 2014. Influence of the nickel oxide nanostructure morphology on the effectiveness of reduced graphene oxide coating in supercapacitor electrodes. The Journal of Physical Chemistry C, 118(5), pp.2281-2286. Available at: https://doi.org/10.1021/jp4094904.

Lin, H.M., Hsu, C.M., Yang, H.Y., Lee, P.Y., & Yang, C.C. 1994. Nanocrystalline WO3-based H2S sensors. Sensors and Actuators B: Chemical, 22(1), pp.63-68. Available at: https://doi.org/10.1016/0925-4005(94)01256-3.

Ling, W.C. 1978. Thermal degradation of gelatin as applied to processing of gel mass, Journal of pharmaceutical sciences, 67(2), pp.218-223. Available at: https://doi.org/10.1002/jps.2600670223.

Lu,Y., Yin,Y., Mayers, B.T., & Xia, Y. 2002. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano letters, 2(3), pp.183-186. Available at: https://doi.org/10.1021/nl015681q.

Maia, A.O.G., Meneses, C.T., Menezes, A.S., Flores, W.H., Melo, D.M.A., & Sasaki, J.M. 2006. Synthesis and X-ray structural characterization of NiO nanoparticles obtained through gelatin. Journal of non-crystalline solids, 352(32-35), pp.3729-3733. Available at: https://doi.org/10.1016/j.jnoncrysol.2006.03.103.

MalekAlaie, M., Jahangiri, M., Rashidi, A.M., HaghighiAsI, A., & Izadi, N. 2015. Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide. Materials Science in Semiconductor Processing, 38(5), pp.93-100. Available at: https://doi.org/10.1016/j.mssp.2015.03.034.

Milić, M.M., Nikolić, V.N. & Jovanović, S. 2017. Synthesis and characterization of nanocrystalline FexOy/Gd2O3/SiO2 composite powder. Ceramics International, 43(16), pp.14044-14049. Available at: https://doi.org/10.1016/j.ceramint.2017.07.138.

Müller, J., Lupton, J. M., Rogach, A.L., Feldmann, J., Talapin, D.V., & Weller, H. 2005. Monitoring surface charge migration in the spectral dynamics of single Cd Se /Cd S nanodot/nanorod heterostructures. Physical Review B, 72(20), p.205339. Available at: https://doi.org/10.1103/physrevb.72.205339.

Navarrete, E., Bittencourt, C., Umek, P., & LIobet, E. 2018. AACVD and gas sensing properties of nickel oxide nanoparticle decorated tungsten oxide nanowires. Journal of Materials Chemistry C, 6(19), pp.5181-5192. Available at: https://doi.org/10.1039/c8tc00571k.

Nikolić, V.N., Milić, M., Jovanović, S. & Girman, V. 2017. Fe3O4 Nanoparticles as Additives for GAMMA-Ray Shielding: Structural and Surface Characterization. Scientific Technical Review, 67(2), pp.20-26. ISSN: 1820-0206.

Nikolić, V.N., Tadić, M., & Spasojević, V. 2016. Thermal stability and magnetic properties of ε-Fe2O3 polymorph. In: VII International Scientific Conference on Defensive Technologies, OTEH, Belgrade, pp.1-21. October 6-7. Available at: https://www.researchgate.net/profile/Srdjan_Zivkovic3/publication/321973454_SURFACE_TEXTURE_FILTRATION__INTERNATIONAL_STANDARDS_and_FILTRATIONS_TECHNIQUE_OVERVIEW/links/5a3baf67a6fdccb29dc873ba/SURFACE-TEXTURE-FILTRATION-INTERNATIONAL-STANDARDS-and-FILTRATIONS-TECHNIQUE-OVERVIEW.pdf.

Privalov, P.L., Tiktopulo, E.I., & Tischenko, V.M.1979. Stability and mobility of the collagen structure. Journal of Molecular Biology, 127(2), pp.203-216. Available at: https://doi.org/10.1016/0022-2836(79)90240-7.

Rahdar, A., Aliahmad, M., & Azizi, Y. 2015. NiO nanoparticles: synthesis and characterization. Journal of Nanostructures, 5(2), pp.145-151. ISSN: 2251-788X.

Rout, C.S., Hedge, M., & Rao, C.N.R. 2008. H2S sensors based on tungsten oxide nanostructures. Sensors and Actuators B: Chemical, 128(2), pp.488-493. Available at: https://doi.org/10.1016/j.snb.2007.07.013.

Salimi, A., Sharifi, E., Noorbakhsh, A., & Soltanian, S. 2017. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosensors and Bioelectronics, 22(12), pp.3146-3153. Available at: https://doi.org/10.1016/j.bios.2007.02.002.

Samouillan, V., Delaunay, F., Dandurand, J., Merbahi, N., Gardou J., Yousfi, M., Gandaglia A., Spina M., & Lacabanne, C., 2011. The Use of Thermal Techniques for the Characterization and Selection of Natural Biomaterials. Journal of Functional Biomaterials, 2(1), pp.230-248. Available at: https://doi.org/10.3390/jfb2030230.

See, R.F., Kruse, R.A., & Strub, W.M. 1998. Metal-Ligand Bond Distances in First-Row Transition Metal Coordination Compounds: Coordination Number, Oxidation State, and Specific Ligand Effects. Inorganic Chemistry, 37(1), pp.5369-5375. Available at: https://doi.org/10.1021/ic971462p.

Sellmyer, D.J., Zheng, M., & Skomski, R. 2001. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. Journal of Physics: Condensed Matter, 13(25), pp.433-447. Available at: https://doi.org/10.1088/0953-8984/13/25/201.

Taghizadeh, F. 2016. The Study of Structural and Magnetic Properties of NiO Nanoparticles. Optics and Photonics Journal, 6(08), pp.164-169. Available at: https://doi.org/10.4236/opj.2016.68B027.

Tauxe, L., Mullender, T.A.T., & Pick, T. 1996. Potbellies, wasp‐waists, and superparamagnetism in magnetic hysteresis, Journal of Geophysical Research: Solid Earth, 101(B1), pp.571-583. Available at: https://doi.org/10.1029/95jb03041.

Tramsdorf, U. I., Bigall, N. C., Kaul, M. G., Bruns, O. T., Nikolic, M. S., Mollwitz, B., & Förster, S. 2007. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano letters, 7(8), pp.2422-2427. Available at: https://doi.org/10.1021/nl071099b.

Wang, Y., Cao, J., Kong, F., Xia, H., Zhang, J., & Wu, S. 2008. Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles. Sensors and Actuators B: Chemical, 131(1), pp.183-189. Available at: https://doi.org/10.1016/j.snb.2007.11.002.

Xing, W., Li, F., Yan, Z., & Lu, G.Q. 2004. Synthesis and electrochemical properties of mesoporous nickel oxide. Journal of Power Sources, 134(2), pp.324-330. Available at: https://doi.org/10.1016/j.jpowsour.2004.03.038.

You, T., Niwa, O., CHEN, Z., Hayashi, K., Tomita, M., & Hirono,S. 2003. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Analytical chemistry, 75(19), pp.5191-5196. Available at: https//doi.org/10.1021/ac034204k.

Published
2019/01/08
Section
Original Scientific Papers