New tuning formulae for the PI controller applied to processes with integral actions

  • Tomislav B. Šekara Faculty of Electrical Engineering University of Belgrade
  • Miroslav R. Mataušek Faculty of Electrical Engineering University of Belgrade
Keywords: Process control systems, Constrained optimization, Process identification, Tuning, PI controller,

Abstract


A new model Gm(s), defined by the four measurable parameters ultimate gain, ultimate frequency, amplitude of ultimate oscillation and dead-time, is obtained from tangent to the Nyquist curve at the critical point. This model represents the generalization of the Ziegler-Nichols process dynamics characterization method, for a large class of stable, integrating and unstable processes Gp(s). In the present paper, by applying time and amplitude scaling technique to the model Gm(s), a new tuning formulae are developed for the PI controller. These tuning formulae guarantee almost optimal performance/robustness tradeoff for a large class of processes with integral action.

Author Biographies

Tomislav B. Šekara, Faculty of Electrical Engineering University of Belgrade
Signak end Systems,  docent professor
Miroslav R. Mataušek, Faculty of Electrical Engineering University of Belgrade
Signak end Systems, Professor

References

Åström, K.J., Hägglund T., (1995), New tuning methods for PID controllers, Proc. 3rd European Control Conf., 2456-2462, Rome, Italy, September.

Hägglund, T.,Åström, K.J., (2002), Revisiting the Ziegler-Nichols tuning rules for PI control, Asian Journal of Control, 4(4), 364-380.

Kristiansson, K., Lennartson B., (2006), Robust Tuning of PI and PID Controllers, IEEE Control Syst. Magazine, 26(1), 55-69.

Mataušek, M.R.,Šekara T.B., (2011), PID controller frequency-domain tuning for stable, integrating and unstable processes, including dead-time , Journal of Process Control, 21(1),17-27.

O’Dwyer A., (2009), Handbook of PI and PID controller tuning rules, Imperial College Press: London.

Šekara, T.B., Mataušek, M.R., (2008a), Optimalno podešavanje PI regulatora zasnovano na maksimizaciji kombinovanog kriterijuma Jc, INFOTEH, 7, Ref. A-3,11-14, Jahorina, Bosna i Hercegovina, Mart.

Šekara, T.B., Mataušek, M.R., (2008b), Optimal and robust tuning of the PI controller based on the maximization of the criterion Jc defined by the linear combination of the integral gain and the closed-loop system bandwidth, Electronics, 12(1), 41-45.

Šekara, T.B., Mataušek M.R., (2010a), Revisiting the Ziegler-Nichols process dynamics characterization , Journal of Process Control, 20(3), 360-363.

Šekara, T.B., Mataušek M.R., (2010b), Novi način klasifikacije procesa u parametarskoj ravni u cilju realizacije inteligentnog upravljanja, ETRAN, 54, AU1-1-4, Donji Milanovac.

Šekara, T.B., Mataušek, M.R, (2010c), Uporedna analiza relejnog eksperimenta i fazno zaključane petlje za određivanje kritične učestanosti i kritičnog pojačanja procesa, INFOTEH, 9, Ref. A-2, 13-16, Jahorina, Bosna i Hercegovina, Mart.

Šekara, T.B., Mataušek M.R., (2010d), Comparative analysis of the relay and phase-locked loop experiment used to determine ultimate frequency and ultimate gain”, Electronics, 14(2), 77-81.

Šekara, T.B., Mataušek, M.R., (2010e), Robusna identifikacija procesa primjenom fazno zaključane petlje, INFOTEH, 10, Ref. A-4, 18-21, Jahorina, Bosna i Hercegovina, Mart.

Šekara, T.B., Mataušek M.R., (2011), Classification of dynamic processes and PID controller tuning in a parameter plane, Journal of Process Control, 21(4), 620-626.

Šekara, T.B., Mataušek, M.R., (2012), PID controller tuning based on the classification of stable integrating and unstable processes in a parameter plane, Chapter 6 in Frontiers in Advanced Control Systems, Ed. G.L.O.Serra, InTechOpen.

Ziegler, J.G., Nichols N.B., (1942), Optimum settings for automatic controllers, Trans. ASME, 64,759-768.

Published
2013/02/20
Section
Original Scientific Papers