Two Laplacian energies and the relations between them
Abstract
Introduction/purpose: The Laplacian energy (LE) is the sum of absolute values of the terms μi-2m/n, where μi, i=1,2,…,n, are the eigenvalues of the Laplacian matrix of the graph G with n vertices and m edges. In 2006, another quantity Z was introduced, based on Laplacian eigenvalues, which was also named „Laplacian energy“. Z is the sum of squares of Laplacian eigenvalues. The aim of this work is to establish relations between LE and Z.
Results: Lower and upper bounds for LE are deduced, in terms of Z.
Conclusion: The paper contributes to the Laplacian spectral theory and the theory of graph energies. It is shown that, as a rough approximation, LE is proportional to the tem (Z-4m2/n)1/2.
References
Andriantiana, E.O.D. 2016. Laplacian energy. In: Gutman, I. & Li, X. (Eds.) Graph Energies - Theory and Applications. Kragujevac: University of Kragujevac, pp.49-80.
Bai, Y., Dong, L., Huang, X., Yang, W., & Liao, M. 2014. Hierarchial segmentation of polarimetric SAR image via non-parametric graph entropy. In: IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, July 13-18. Available at: https://doi.org/10.1109/IGARSS.2014.6947054.
Das, K.C., & Mojallal, S.A. 2014. On Laplacian energy of graphs. Discrete Mathematics, 325, pp.52-64. Available at: https://doi.org/10.1016/j.disc.2014.02.017.
Deepa, G., Praba, B. & Chandrasekaran, V.M. 2016. Spreading rate of virus on energy of Laplacian intuitionistic fuzzy graph. Research Journal on Pharmacy and Technology, 9(8), pp.1140-1144. Available at: https://doi.org/10.5958/0974-360X.2016.00217.1.
Grone, R., Merris, R., & Sunder, V.S. 1990. The Laplacian Spectrum of a Graph. SIAM Journal on Matrix Analysis and Applications, 11(2), pp.218-238. Available at: https://doi.org/10.1137/0611016.
Gutman, I. 2020. New bounds for Laplacian energy. Vojnotehnički glasnik/Military Technical Courier, 68(1), pp.1-7. Available at: https://doi.org/10.5937/vojtehg68-24257.
Gutman, I., & Furtula, B. 2019. Graph Energies: Survey, Census, Bibliography. Kragujevac: Centar SANU. Bibliography.
Gutman, I., & Zhou, B. 2006. Laplacian energy of a graph. Linear Algebra and its Applications, 414(1), pp.29-37. Available at: https://doi.org/10.1016/j.laa.2005.09.008.
Huigang, Z., Xiao, B., Huaxin, Z., Huijie, Z., Jun, Z., Jian, C., & Hanqing, L. 2013. Hierarchical remote sensing image analysis via graph Laplacian energy. IEEE Geoscience Remote Sensing Letters, 10(2), pp.396-400. Available at: https://doi.org/10.1109/LGRS.2012.2207087.
Lazić, M. 2006. On the Laplacian energy of a graph. Czechoslovak Mathematical Journal, 56(4), pp.1207-1213 [online]. Available at: http://cmj.math.cas.cz/cmj56-4/10.html [Accessed: 21 February 2020].
Li, X., Shi, Y., & Gutman, I. 2012. Introduction. In: Graph Energy. New York, NY: Springer Science and Business Media LLC., pp.1-9. Available at: https://doi.org/10.1007/978-1-4614-4220-2_1.
Luyuan, C., Meng, Z., Shang, L., Xiaoyan, M., & Xiao, B. 2010. Shape Decomposition for Graph Representation. In: Lee, R., Ma, J., Bacon, L., Du, W., & Petridis, M. (Eds.) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, 295. Berlin, Heidelberg: Springer, pp.1-10. Available at: https://doi.org/10.1007/978-3-642-13265-0_1.
Meng, Z. & Xiao, B. 2011. High-resolution satellite image classification and segmentation using Laplacian graph energy. In: IEEE Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, July 24-29. Available at: https://doi.org/10.1109/IGARSS.2011.6049201.
Merris, R. 1994. Laplacian matrices of graphs: A survey. Linear Algebra and its Applications, 197-198, pp.143-176. Available at: https://doi.org/10.1016/0024-3795(94)90486-3.
Mohar, B. 1992. Laplace eigenvalues of graphs-a survey. Discrete Mathematics, 109(1-3), pp.171-183. Available at: https://doi.org/10.1016/0012-365X(92)90288-Q.
Nikiforov, V. 2007. The energy of graphs and matrices. Journal of Mathematical Analysis and Applications, 326(2), pp.1472-1475. Available at: https://doi.org/10.1016/j.jmaa.2006.03.072.
Pirzada, S., & Ganie, H.A. 2015. On the Laplacian eigenvalues of a graph and Laplacian energy. Linear Algebra and its Applications, 486, pp.454-468. Available at: https://doi.org/10.1016/j.laa.2015.08.032.
Pournami, P.N. & Govindan, V.K. 2017. Interest point detection based on Laplacian energy of local image network. In: International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, March 22-24. Available at: https://doi.org/10.1109/WiSPNET.2017.8299719.
Qi, X., Duval, R.D., Christensen, K., Fuller, E., Spahiu, A.,Wu, Q., Wu, Y., Tang, W., & Zhang, C. 2013. Terrorist networks, network energy and node removal: A new measure of centrality based on Laplacian energy. Social Networking, 2(1), pp.19-31. Available at: https://doi.org/10.4236/sn.2013.21003.
Qi, X., Fuller, E., Luo, R., Guo, G., & Zhang, C. 2015. Laplacian energy of digraphs and a minimum Laplacian energy algorithm. International Journal on the Foundation of Computer Science, 26(3), pp.367-380. Available at: https://doi.org/10.1142/S0129054115500203.
Qi, X., Fuller, E., Wu, Q., Wu, Y., & Zhang, C.Q. 2012. Laplacian centrality: A new centrality measure for weighted networks. Information Science, 194, pp.240-253. Available at: https://doi.org/10.1016/j.ins.2011.12.027.
Ramane, H.S. 2020. Energy of graphs. In: Pal, M., Samanta, S., & Pal, A. (Eds.) Handbook of Research on Advanced Applications of Graph Theory in Modern Society. Hershey, Pennsylvania, USA: IGI Global, pp.267-296.
Song, YZ., Arbelaez, P., Hall, P., Li, C., & Balikai, A. 2010. Finding semantic structures in image hierarchies using Laplacian graph energy. In: Daniilidis, K., Maragos, P. & Paragios N. (Eds.) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, 6314. Berlin: Springer, pp.694-707. Available at: https://doi.org/10.1007/978-3-642-15561-1_50.
Xiao, B., Song, YZ., & Hall, P. 2011. Learning invariant for object identification by using graph methods. Computer Vision and Image Understanding, 115(7), pp.1023-1031. Available at: https://doi.org/10.1016/j.cviu.2010.12.016.
Zou, HL., Yu, ZG., Anh, V., & Ma, YL. 2018. From standard alpha-stable Lévy motions to horizontal visibility networks: dependence of multifractal and Laplacian spectrum. Journal of Statistical Mechanics Theory and Experiment, 2018(May) [online]. Available at: https://iopscience.iop.org/article/10.1088/1742-5468/aaac3d/pdf [Accessed: 21 February 2020].
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).