Solutions and Ulam-Hyers stability of differential inclusions involving Suzuki type multivalued mappings on b-metric spaces
Abstract
Introduction/purpose: This paper presents coincidence and common fixed points of Suzuki type multivalued operators on b-metric spaces.
Methods: The limit shadowing property was discussed as well as the well- posedness and the Ulam-Hyers stability of the solution for the fixed point problem of such operators.
Results: The upper bound of the Hausdorff distance between the fixed point sets is obtained. Some examples are presented to support the obtained results.
Conclusion: The application of the obtained results establishes the existence of differential inclusion.
References
Abbas, M., Ali, B., & Vetro, C. 2013. A Suzuki type fixed pointtheorem for a generalized multivalued mapping on partial Hausdorff metric spaces. Topology and its Applications, 160(3), pp.553-563. Available at: https://doi.org/10.1016/j.topol.2013.01.006.
Abbas, M., Ćirić, Lj., Damjanović, B., & Khan, М.А. 2012. Coupled coincidence and common fixed point theorems for hybrid pair of mappings on a test. Fixed Point Theory and Applications, art.number:4. Available at: https://doi.org/10.1186/1687-1812-2012-4.
Aleksić, S., Došenović, T., Mitrović, D.Z., & Radenović, S. 2019a. Remarks on common fixed point results for generalized α_*-ψ- contraction multivalued mappings in b-metric spaces. Advances in Fixed Point Theory, 9(1), pp.1-16. Available at: https://doi.org/10.28919/afpt/3731.
Aleksić, S., Huang, H, Mitrović, D.Z., & Radenović, S. 2018. Remarks on some fixed point results in b-metric spaces. Journal of Fixed Point Theory and Applications, 20(art.number:147). Available at: https://doi.org/10.1007/s11784-018-0626-2.
Aleksić, S., Mitrović, Z.D., & Radenović, S. 2019b. Picard sequences in b-metric spaces. Fixed Point Theory, 21(1), pp.35-46. Available at: https://doi.org/10.24193/fpt-ro.2020.1.03.
Ali, B., & Abbas, M. 2017. Existence Ulam–Hyers stability of fixed point problem of generalized Suzuki type (α_*,ψ_φ)-contractive multivalued operators. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM), 111(4), pp.1129-1146. Available at: https://doi.org/10.1007/s13398-016-0351-x.
An, T.V., Dung, N.V., Kadelburg, Z., & Radenović, S. 2015a. Various generalizations of metric spaces and fixed point theorems. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM), 109, pp.175-198. Available at: https://doi.org/10.1007/s13398-014-0173-7.
An, T.V., Tuyen, L.Q., & Dung, N.V. 2015b. Stone-type theorem on b-metric spaces and applications. Topology and its Applications,185-186, pp.50-64. Available at: https://doi.org/10.1016/j.topol.2015.02.005.
Asl, J.H., Rezapour, Sh., & Shahzad, N. 2012. On fixed points of α-ψ-contractive multifunctions. Fixed Point Theory and Applications, art.number:212. Available at: https://doi.org/10.1186/1687-1812-2012-212.
Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181.
Berinde, V. 1993. Generalized contractions in quasimetric spaces. In: Seminar on Fixed Point Theory, Babeş-Bolyai University, Cluj-Napoca, pp.3-9.
Berinde, V. 1996. Sequences of operators and fixed points in quasimetric spaces. Studia Universitatis Babeş-Bolyai Mathematica, 41(4), pp.23-27.
Berinde, V. 1997. Contracţii generalizate şi aplicaţii. Baia Mare: Editura Club Press (in Romanian).
Bhaskar, T.G., & Lakshmikantham, V. 2006. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis: Theory, Methods &Applications, 65(7), pp.1379-1393. Available at: https://doi.org/10.1016/j.na.2005.10.017.
Bota, M.F., Ilea, V., Karapınar, E., & Mleşniţ, O. 2015. On α_*-ψ-contractive multivaalued operators in b-metric spaces and applications. Applied Mathematics & Information Sciences, 9(5), pp.2611-2620 [online]. Available at: http://www.naturalspublishing.com/Article. Asp?ArtcID=9576 [Accessed: 21 May 2020].
Chifu, C., & Petruşel, G. 2014. Fixed points for multivalued contractions in b-metric spaces with applications to fractals. Taiwanese Journal of Mathematics, 18(5), pp.1365-1375. Available at: https://doi.org/10.11650/tjm.18.2014.4137.
Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), pp.5-11 [online]. Available at: https://dml.cz/dmlcz/120469[Accessed: 21 May 2020].
Ćirić, Lj., Abbas, M., Rajović, M., & Ali, B. 2012. Suzuki type fixed point theorems for generalized multi-valued mappings on a set endowed with two b-metric. Applied Mathematics and Computation, 219(4), pp.1712-1723. Available at: https://doi.org/10.1016/j. Amc.2012.08.011.
Fréchet, M. 1905. La notion d’écart et le calcul fonctionnel. Comptes Rendus Hebdomadaires des Scéances de l'Académie des Sciences, 140(1), pp.772-774 [online]. Available at: https://www.biodiversitylibrary.org/item/31541#page/778/mode/1up (in French) [Accessed: 21 May 2020].
Haghi, R.H., Rezapour, Sh., & Shahzad, N. 2011. Some fixed point generalisations are not real generalizations. Nonlinear Analysis: Theory, Methods & Applications, 74(5), pp.1799-1803. Available at: https://doi.org/10.1016/j.na.2010.10.052.
Hussain, N., Đorić, D., Kadelburg, Z., & Radenović, S. 2012. Suzuki-type fixed point results in metric type spaces. Fixed Point Theory and Applications, art.number:126. Available at: https://doi.org/10.1186/1687-1812-2012-126.
Hyers,D.H. 1941. On the stability of the linear functional equation. In: Proceedings of the National Academy of Sciences of the USA, 27(4), pp.222-224, April 15. Available at: https://doi.org/10.1073/pnas.27.4.222.
Karapinar, E., Mitrović, Z.D., Ozturk, A., & Radenović, S. 2020. On a theorem of Cirić in b-metric spaces. Rendiconti del Circolo Matematico di palermo Series 2. Available at: https://doi.org/10.1007/s12215-020-00491-9.
Khojasteh, F., Abbas, M., & Costache, S. 2014. Two new types of fixed point theorems in complete metric spaces. Variational Analysis, Optimization, and Fixed Point Theory, art.ID325840. Available at: https://doi.org/10.1155/2014/325840.
Kirk, W., & Shahzad, N. 2014. Fixed Point Theory in Distance Spaces. Cham, Switzerland: Springer International Publishing.
Latif, A., Parvaneh, V., Salimi, P., & Al-Mazrooei, A.E. 2015. Various Suzuki type theorems in b-metric spaces. Journal of Nonlinear Sciences and Applications (JNSA), 8(4), pp.363-377. Availableat: https://doi.org/10.22436/jnsa.008.04.09.
Lazar, V.L. 2012. Ulam-Hyers stability for partial differential inclusions. Electronic Journal of Qualitative Theory of Differential Equations, 21, pp.1-19. Available at: https://doi.org/10.14232/ejqtde.2012.1.21.
Michael, E. 1956. Continuous selections. I. Annals of Mathematics, 63(2), pp.361-382. Available at: https://doi.org/10.2307/1969615.
Mitrović, Z.D. 2019. A note on the results of Suzuki, Miculescu and Mihail. Journal of Fixed Point Theory and Applications, 21(art.number:24). Available at: https://doi.org/10.1007/s11784-019-0663-5.
Mitrović, Z.D., Parvaneh, V., Mlaiki, N., Hussain, N., & Radenović, S. 2020. On some new generalizations of Nadler contraction in b-metric spaces. Cogent Mathematics and Statistics, 7(1), art.number:1760189. Available at: https://doi.org/10.1080/25742558.2020.1760189.
Mohammadi, B., Dinu, S., & Rezapour, Sh. 2013. Fixed points of Suzuki type quasi-contractions. U.P.B. Scientific Bulletin, Series A,75(3), pp.3-12 [online]. Available at: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fulld89_199620.pdf. [Accessed: 21 May 2020].
Nadler, Jr. S.B. 1969. Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), pp.475-488. Available at: https://doi.org/10.2140/pjm.1969.30.475.
Nieto, J.J., & Rodríguez-López, R. 2005. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation. Order, 22, pp.223-239. Available at: https://doi.org/10.1007/s11083-005-9018-5.
Nieto, J.J., & Rodríguez-López, R. 2007. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Mathematica Sinica, English Series, 23, pp.2205-2212. Available at: https://doi.org/10.1007/s10114-005-0769-0.
Păcurar, M. 2010. A fixed point result for φ-contractions on b-metric spaces without the boundedness assumption. Fasciculi Mathematici, 43, pp.127-137 [online]. Available at: http://www.math.put.poznan.pl/artykuly/FM43(2010)-PacurarM.pdf [Accessed: 21 May 2020].
Petru, T.P., Petrusel, A., & Yao, J.-C. 2011. Ulam-Hyers stability for operatorial equations inclusions via nonself operators. Taiwanese Journal of Mathematics, 15(5), pp.2195-2212. Available at: https://doi.org/10.11650/twjm/1500406430.
Ran, A.C.M., & Reurings, M.C.B. 2004. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proceedings of the American Mathematical Society, 132(5), pp.1435-1443. Available at: https://doi.org/10.1090/S0002-9939-03-07220-4.
Rhoads, B.E. 2015. Two new fixed point theorem. Gen. Math. Notes, 27(2), pp.123-132 [online]. Available at: https://www.emis.de/journals/GMN/yahoo_site_admin/assets/docs/12_GMN-7082-V27N2.154194604.pdf[Accessed: 21 May 2020].
Rus, I. A. 2001. Generalized contractions and applications. Cluj: University Press.
Rus, I. A. 2009. Remarks on Ulam stability of the operatorial equations. Fixed Point Theory,10(2), pp.305-320 [online]. Available at: http://www.math.ubbcluj.ro/~nodeacj/vol__10(2009)_no_2.php[Accessed: 21 May 2020].
Rus, I. A., Petruşel, A., & Sîntămărian, A. 2003. Data dependence of the fixed point set of some multivalued weakly Picard operators. Nonlinear Analysis: Theory, Methods & Applications, 52(8), pp.1947-1959. Available at: https://doi.org/10.1016/S0362-546X(02)00288-2.
Samet, B., Vetro, C., & Vetro, P. 2012. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4), pp.2154-2165. Available at: https://doi.org/10.1016/j.na.2011.10.014.
Singh, S.L., & Prasad, B. 2008. Some coincidence theorems and stability of iterative procedures. Computers & Mathematics with Applications, 55(11), pp.2512-2520. Available at: https://doi.org/10.1016/j.camwa.2007.10.026.
Suzuki, T. 2008. A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(5), pp.1861-1869. Available at: https://doi.org/10.1090/S0002-9939-07-09055-7.
Ulam, S.M. 1964. Problems in Modern Mathematics. New York, NY: John Wiley and Sons.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).