A solution for the over-the-horizon-radar simulator

Keywords: over-the-horizon-radar, radar cross-section, exclusive economic zone, radar simulator

Abstract


Introduction/purpose: The OTHR simulator presented in this paper is developed and used in practice, with the aim of emulating radar signal environment, but also optimizing the radar parameters in real applications such as: radiated power, antenna array gain, path loss, radar cross section, external interference, and noises.

Methods: In this paper, the methodology of mathematical modeling is used as well as simulations .

Results: Based on the performed analysis, the output data from the OTHR simulator is presented and discussed. 

Conclusion: The usage of the presented OTHR simulator makes assessing the reliability of a potential radar at predetermined locations automated, controllable and efficient, with results closely matching radar behavior in real operation.

References

Barrick, D.E. 1970. Theory of Ground-Wave Propagation Across A Rough Sea at Decameter Wavelengths. Columbus, Ohio: Battelle Memorial Institute [online]. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/865840.pdf [Accessed: 7 June 2020].

Dzolic, B., Tosic, N., Lekic, N., Orlic, V & Veinovic, M. 2019a. Transmitter’s internal noise performance as limiting factor inHigh-Frequency Over-the-Horizon radars. In: 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Niš, Serbia, October 23-25. Available at: https://doi.org/10.1109/TELSIKS46999.2019.9002333.

Džolić, B., Tošić, N., Orlić, V. & Veinović, M. 2019b. Visualisation tools for design of Maritime Surveillance System. In: Sinteza 2019 - International Scientific Conference on Information Technology and Data Related Research, Belgrade, Serbia, April 20th. Available at: https://doi.org/10.15308/Sinteza-2019-546-552.

Dzvonkovskaya, A. & Rohling, H. 2010. Cargo ship RCS estimation based on HF radar measurements. In: 11th International Radar Symposium (IRS), Vilnius, Lithuania, June 6-18 [online]. Available at: https://ieeexplore.ieee.org/document/5547445 [Accessed: 7 June 2020].

Fabrizio, G. 2013. High Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing, and Practical Applications. New York: McGraw- Hill. ISBN: 9780071621274.

Girault, B., Narayanan, S., Ortega, A., Gonçalves, P. & Fleury, E. 2017. Grasp: A Matlab toolbox for graph signal processing. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, March 5-9. Available at: https://doi.org/10.1109/ICASSP.2017.8005300.

Grbić, N., Petrović, P., Stevanović, N., Džolić, B., Nikolić, D. & Lekić, N. 2018. Simulacija radarske površine brodova u kratkotalasnom frekventnom opsegu. In: 62nd ETRAN Conference, Palić, Serbia, pp.126-129, June 11-14 (In Serbian) [online]. Available at: https://www.etran.rs/common/Zbornik%20ETRAN%20IC%20ETRAN-18-final.pdf [Accessed: 7 June 2020].

Hand, G.R. 2017. Combination of Radio Noise modification [online]. Available at: http://www.greg-hand.com/noise/ [Accessed: 15 April 2020].

-ITU (International Telecommunication Union). 1992. Recommendation ITU-R P.527-3. Electrical characteristic of the surface of the earth [online]. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.527-3-199203-S!!PDF-E.pdf [Accessed: 7 June 2020].

-ITU (International Telecommunication Union). 2007. Recommendation P.368-9 (02/07) Ground-wave propagation curves for frequencies between 10 kHz and 30 MHz [online]. Available at: https://www.itu.int/rec/R-REC-P.368-9-200702-I/en [Accessed: 7 June 2020].

-ITU (International Telecommunication Union). 2013. Recommendation P.372-11 (09/2013) Radio noise [online]. Available at: https://www.itu.int/rec/R-REC-P.372-11-201309-S/en [Accessed: 7 June 2020].

-ITU (International Telecommunication Union). 2020. Software, Data and Validation examples for ionospheric and tropospheric radio wave propagation and radio noise, Ground-wave propagation (GRWAVE) ver.9.2, Software [online]. Available at: https://www.itu.int/en/ITU-R/study-groups/rsg3/Pages/iono-tropo-spheric.aspx [Accessed: 15 April 2020].

Kolundzija, B.M., Ognjanovic, J.S.& Sarkar T.K. 2005. WIPL-D Microwave: Software and User's Manual: Circuit and 3D EM Simulation for RF and Microwave Applications. Norwood, Massachusetts: Artech House. ISBN: 978-1580539654.

Nikolić, D., Džolić. B., Tošić, N., Lekić, N., Orlić. V. & Todorović, B. 2016a. HFSW Radar Design: Tactical, Technological and Environmental Challenges. In: OTEH 7th International Scientific Conference on Defensive Technologies, Belgrade, Serbia, October 6-7.

Nikolic, D., Popovic, Z., Borenovic, M., Stojkovic, N., Orlic, V., Dzvonkovskaya, A. & Todorovic, B. 2016b. Multi-Radar Multi-Target Tracking Algorithm for Maritime Surveillance at OTHR Distances. In: 17th International Radar Symposium (IRS), Krakow, Poland, May 11-15.

Nikolic, D., Stojkovic, N. & Lekic, N. 2018. Maritime Over the Horizon Sensor Integration: HFSWR and AIS Data Integration Algorithm. Sensors, 18 (4), 1147. Available at: https://doi.org/10.3390/s18041147.

Petrovic, R., Simic, D., Drajic, D., Cica, Z., Nikolic, D. & Peric, M. 2020. Designing Laboratory for IoT Communication Infrastructure Environment for Remote Maritime Surveillance in Equatorial Areas Based on the Gulf of Guinea Field Experiences. Sensors, 20(5), 1349. Available at: https://doi.org/10.3390/s20051349

Sevgi, L. & Ponsford, A.M. 1999. An HF Radar Base Integrated Maritime Surveillance System. In: 3rd International Multiconference IMACS/IEEE CSCC'99, Athens (Greece), pp.5801-5806, July 4-8 [online]. Available at: http://www.wseas.us/e-library/conferences/athens1999/Papers/580.pdf [Accessed: 7 June 2020].

Skolnik, M.I. 1974. An empirical formula for the radar cross section of the ships at grazing incidence. IEEE Transactions on Aerospace and Electronic Systems, AES-10(2), pp.292-292. Available at: https://doi.org/10.1109/TAES.1974.307935.

Skolnik, M.I. 1990. Radar Handbook, Second Edition. New York: McGraw-Hill. ISBN: 0-07-057913-X.

Spaulding, A.D. & Washburn, J.S., 1985. Atmospheric Radio Noise: Worldwide Levels and Other Characteristics. NTIA Report 85-173. U.S. Department of commerce.

Stojković, N., Nikolić, D., Džolić, B., Tošić, N., Orlić, V., Lekić, N. & Todorović, B. 2016. An Implementation of Tracking Algorithm for Over-The-Horizon Surface Wave Radar. In: 24th Telecommunications Forum (TELFOR), Belgrade, Serbia, November 22–23.

Tošić, N., Džolić, B., Nikolić, D., Lekić, N. & Todorović, B. 2016. Izazovi pri projektovanju HFSW radara. In: 60th ETRAN Conference, Zlatibor, Serbia, June 13-16 (in Serbian).

-United Nations, 2011. Law of the Sea, Part V—Exclusive Economic Zone [online]. Available at: https://www.un.org/depts/los/convention_agreements/texts/unclos/part5.htm [Accessed: 7 June 2020].

-Vlatacom Institute. 2018. Over the horizon radar: vOTHR, Product datasheet [online]. Available at: https://www.vlatacominstitute.com/over-the-horizon-radar [Accessed: 7 June 2020].

Wilson, H. & Leong, H. 2003. An Estimation and Verification of Vessel Radar-Cross-Section for HF Surface Wave Radar. In: 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695), Adelaide, Australia, September 3-5. Available at: https://doi.org/10.1109/RADAR.2003.1278830.

Published
2020/07/25
Section
Original Scientific Papers