Analysis of influencing factors that can cause errors in the application of modern methods of sliding bearing diagnostics in machine and electrical systems

Keywords: technical diagnostics, sliding bearing, bearing clearance, bearing wear, bearing sleeve, dynamic trajectory

Abstract


Introduction/purpose: The paper presents the application of modern methods in the  diagnostics of sliding bearings and the analysis of influencing factors that can cause errors in such an application. Possibilities to determine with certainty when and where problems affect sliding bearings during system operation are presented. It is also shown how the system will continue to function over time. Causes of failures and the manner of their elimination are predicted, as well as the time for planned maintenance of technical systems.

Method: The new method solves the problem of sliding bearing diagnostics by measuring the dynamic trajectories of the sleeve in the sliding bearing and by measuring vibration parameters on the inner and outer surfaces of the technical system. The dynamic trajectories of the bearing sleeve are measured with non-contact probes; therefore, the centering of probes in relation to the geometric center of the bearing is very important. Vibration parameters, directly related to the clearance in the sliding bearing, are measured on the inner and outer surfaces of the system. The choice of vibration parameters and measuring points is very important. This method has a number of advantages over other diagnostic methods, as it is easy to access measuring points.

Results: By measuring the dynamic trajectory of the sleeves in the plain bearing and vibration parameters on the inner and outer surfaces, the bearing clearance quantities are determined, including: normal condition, initial clearance size, its further increase, bearing clearance sizes, and the moment when the condition parameters are close to the upper limit of the permissible bearing clearance.

Conclusion: New diagnostic methods and monitoring systems can be widely applied to: internal combustion engines, all piston machines, hydroelectric power plants, thermal power plants, processing plants, and many other systems.

Author Biography

Nikola P. Žegarac, Serbian Academy of Inventors and Scientists, Belgrade, Republic of Serbia

Srbija

References

-Bently Nevada Corporation. 1987. Turbine Supervisory Instrumentation Brochure, L2016, february. Nevada, US: Bently Nevada Corporation.

Cohn-Sfetcu, S., Smith, M.R., Nichols, S.T. & Henry, D.L. 1975. A digital technique for analyzing a class of multicomponent signals. Proceedings of the IEEE, 63(10), pp.1460-1467. Available at: https://doi.org/10.1109/PROC.1975.9975.

-Easy-Laser. 2020. Laser measurement & alignment systems. Technical documentation. Damalini, Sweden: Easy-Laser.

Fertis, D.G. 1973. Dynamics and Vibrations of Structures. New York: John Wiley & Sons.

Genkin, M.D. & Sokolova, A.G. 1987. Vibroakusticheskaya diagnostika mashin i mekhanizmov. Moscow: Mashinostroenie (in Russian). (In the original: Генкин, М.Д., Соколова А.Г. 1987. Виброакустическая диагностика машин и механизмов. Машиностроение: Москва).

-ISO. 1974. ISO 2372:1974 Mechanical vibration of machines with operating speeds from 10 to 200 rev/s - Basis for specifying evaluation standards [online]. Available at: https://www.iso.org/standard/7212.html [Accessed: 12 June 2020].

-ISO. 1995. ISO 10816-1:1995 Mechanical vibration - Evaluation of machine vibration by measurements on non-rotating parts - Part 1: General guidelines [online]. Available at: https://www.iso.org/standard/18866.html [Accessed: 12 June 2020].

Lang, O.R. & Steinhilper, W. 1978. Gleitlager. Berlin, Heidelberg: Springer-Verlag (in German). Available at: https://doi.org/10.1007/978-3-642-81225-5.

Miroshnikov, L.V., Boldin, A.P. & Pal, V.I. 1977. Diagnostirovaniye tekhnicheskogo sostoyaniya avtomobiley na avtotransportnykh predpriyatiyakh. Moscow: Tehnika (in Russian). (In the original: Мирошников, Л.В., Болдин, А.П., Пал В.И. 1977. Диагностирование технического состояния автомобилей на автотранспортных предприятиях. Москва: Транспорт).

Schiffbänker, H. & Gerhard, E.T. 1988. Automatische Gutekontrole an Verbrennungsmotoren auf Basis von Schingungs Informationen. MTZ - Motortechnische Zeitschrift, 49(2) (in German).

Thomson, W.T.1983. Theory of Vibration with Applications, Second edition. London: George Allen & Unwin Ltd.

Vasilyev, Yu.N., Beskletnyy, M.Ye., Igumentsev, Ye.A. & Khristenzen, V.L. 1987. Vibratsionnyy kontrol' tekhnicheskogo sostoyaniya gazoturbinnykh gazoperekachivayushchikh agregatov. Moscow: Nedra (in Russian). (In the original: Васильев, Ю.Н., Бесклетный, М.Е., Игуменцев, Е.А., Христензен, В.Л. 1987. Вибрационный контроль технического состояния газотурбинных газоперекачивающих агрегатов. Москва: Недра).

Zhdanovskiy, N.S. 1966. Bestormoznyye ispytaniya traktornykh dvigateley. Moscow, Leningrad: Mashinostroenie (in Russian). (In the original: Ждановский, Н.С. 1966. Бестормозные испытания тракторных двигателей. Москва, Ленинград: Машиностроение).

Zhdanovskiy, N.S. 1977. Diagnostika avtotraktornykh dvigateley. Leningrad: Kolos (in Russian). (In the original: Ждановский, Н.С. 1977. Диагностика автотракторных двигателей. Ленинград: Колос).

Žegarac, N. 1989. Dijagnostika kliznih ležajeva u dizel motoru (in Serbian). Ph.D. thesis. Zagreb: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture.

Žegarac, N. 1993. Postupak dijagnostike ležajeva merenjem dinamičkih putanja glavnih rukavaca, kolenastog vratila (in Serbian). Serbian Patent number P-640/93.

Žegarac, N. 2020. Development of a method for determining the size of clearance in sliding bearings. Vojnotehnički glasnik/Military Technical Courier, 68(3), pp.530-553. Available at: https://doi.org/10.5937/vojtehg68-26107.

Published
2020/07/25
Section
Original Scientific Papers