Relating graph energy with vertex-degree-based energies

Keywords: energy (of a graph), vertex-degree-based graph invariant, vertex-degree-based graph energy

Abstract


Introduction/purpose: The paper presents numerous vertex-degree-based graph invariants considered in the literature. A matrix can be associated to each of these invariants. By means of these matrices, the respective vertex-degree-based graph energies are defined as the sum of the absolute values of the eigenvalues.

Results: The article determines the conditions under which the considered graph energies are greater or smaller than the ordinary graph energy (based on the adjacency matrix).

Conclusion: The results of the paper contribute to the theory of graph energies as well as to the theory of vertex-degree-based graph invariants.

Author Biography

Ivan Gutman, University of Kragujevac, Faculty of Science, Kragujevac, Republic of Serbia

References

Cruz, R., Pèrez, T. & Rada, J. 2015. Extremal values of vertex-degree-based topological indices over graphs. Journal of Applied Mathematics and Computing, 48(1-2), pp.395-406. Available at: https://doi.org/10.1007/s12190-014-0809-y.

Cvetković, D., Rowlinson, P. & Simić, K. 2010. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press. ISBN: 9780521134088.

Das, K.C., Gutman, I., Milovanović, I., Milovanović, E. & Furtula, B. 2018. Degree-based energies of graphs. Linear Algebra and its Applications, 554, pp.185-204. Available at: https://doi.org/10.1016/j.laa.2018.05.027.

Furtula, B., Gutman, I. & Dehmer, M. 2013. On structure-sensitivity of degree-based topological indices. Applied Mathematics and Computation, 219(17), pp.8973-8978. Available at: https://doi.org/10.1016/j.amc.2013.03.072.

Gutman, I. 1978. The energy of a graph. Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz, 103, pp.1-22.

Gutman, I. 2017a. Selected Theorems in Chemical Graph Theory. Kragujevac: University of Kragujevac.

Gutman, I. 2017b. Relation between energy and extended energy of a graph. International Journal of Applied Graph Theory,1(1), pp.42-48.

Gutman, I. 2018. Stepwise irregular graphs. Applied Mathematics and Computation, 325, pp.234-238. Available at: https://doi.org/10.1016/j.amc.2017.12.045.

Kulli, V.R. 2020. Graph indices. In: Pal, M., Samanta, S. & Pal, A. (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, pp.66-91. Hershey, USA: IGI Global. Available at: https://doi.org/10.4018/978-1-5225-9380-5.ch003.

Li, X., Shi, Y. & Gutman, I. 2012. Introduction. In: Graph Energy, pp.1-9. New York, NY: Springer Science and Business Media LLC. Available at: https://doi.org/10.1007/978-1-4614-4220-2_1.

Liu, M., Xu, K. & Zhang, X.-D. 2019. Extremal graphs for vertex-degree-based invariants with given degree sequences. Discrete Applied Mathematics, 255, pp.267-277. Available at: https://doi.org/10.1016/j.dam.2018.07.026.

Mateljević, M., Božin, V. & Gutman, I. 2010. Energy of a polynomial and the Coulson integral formula. Journal of Mathematical Chemistry, 48(4), pp.1602-1068. Available at: https://doi.org/10.1007/s10910-010-9725-z.

Rada, J. & Cruz, R. 2014. Vertex-degree-based topological indices over graphs. MATCH Communications in Mathematical and in Computer Chemistry, 72(3), pp.603-616 [online]. Available at: http://match.pmf.kg.ac.rs/electronic_versions/Match72/n3/match72n3_603-616.pdf [Accessed: 15 August 2020].

Todeschini, R. & Consonni, V. 2009. Molecular Descriptors for Chemoinformatics. Weinheim: Wiley-VCH. ISBN: 978-3-527-31852-0.

Zhong, L. & Xu, K. 2014. Inequalities between vertex-degree-based topological indices. MATCH Communications in Mathematical and in Computer Chemistry, 71(3), pp.627-642 [online]. Available at: http://match.pmf.kg.ac.rs/electronic_versions/Match71/n3/match71n3_627-642.pdf [Accessed: 15 August 2020].

Published
2020/07/25
Section
Original Scientific Papers