Force measurements on teeth using fixed orthodontic systems

  • Rebeka M. Rudolf University of Maribor, Faculty of Mechanical Engineering, Slovenia Zlatarna Celje d.d.
  • Janko J. Ferčec University of Maribor, Faculty of Mechanical Engineering, Slovenia
Keywords: NiTi alloys, teeth, orthodontic system, Force measurement,

Abstract


Fiksni ortodontski aparat sastoji se od bravica (breketa) povezanih zubima. Nakon provlačenja kroz otvore na breketima, žica generiše silu koja utiče na ortodontsko pomeranje zuba. Promena u parodontalnom dotoku krvi predstavlja biološki odgovor koji dovodi do preoblikovanja alveolarne kosti i ortodontskog pomeranja zuba. Mnoge promenljive koje utiču na ortodontsko pomeranje zuba, poput rasta i odgovora tkiva na aparat, ne mogu da se kontrolišu u potpunosti. Međutim, sila kojom se deluje na zub treba da bude promenljiva i na nju se može uticati, a pažljivo izvedeno ispitivanje fizičke osnove kliničkih primena može da bude od pomoći pri smanjivanju neželjenih sporednih efekata. Osobine ortodontskih žica, kao što su jačina, krutost, elastičnost i spring-back efekat definišu njihovu kliničku primenljivost. Idealna ortodontska žica treba da poseduje sledeće osobine: izražen spring-back efekat, nisku krutost, dobru obradivost, visok nivo uskladištene energije, biokompatibilnost i stabilnost u okruženju, malo površinsko trenje, kao i sposobnost zavarivanja i lemljenja s pomoćnim delovima. Idealna žica za luk još nije pronađena. Kada se žica aktivira ili savije, ortodontsko pomeranje zuba vrši se pod uticajem rasterećenja ili deaktiviranja sila.  Stoga je potrebno znati nivo sile koju proizvodi svaka žica pojedinačno pri ortodontskom lečenju. Cilj ovog rada je da izmeri sile nastale dejstvom različitih superelastičnih NiTi žica.

References

Auricchio, F., & Massarotti, V. One Way and Two Way-Shape Memory Effect: Thermo-Mechanical Characterization of Ni-Ti wires. Retrieved from http://www. 2.unipv.it/compmech/dissertations/zanaboni.pdf.

Auricchio, F., & Taylor, R. 1997. Comput. Meth. Appl. Mech. Eng., 143, pp. 175-194.

Chang, Y., Shin, S., & Baek, S. 2004. Three-dimensional finite element analysis in distal en masse movement of the maxillary dentition with the multiloop edgewise archwire. Eur J Orthod, 26(3), pp. 339-45. pmid:15222721. doi:10.1093/ejo/26.3.339

Coluzzi, B., Biscarini, A., di Massoa, L., Mazzolai, F.M., Staffolanib, N., Guerrab, M., Tuissi, A. 1996. Phase transition features of NiTi orthodontic wires subjected to constant bending strains. Journal of Alloys and Compounds, 233(1-2), pp. 197-205.

de Weck, O., & Yong, K.I. Finite Element Method. Retrieved from http://web.mit.edu/16. 810/www/16. 810_L4_CAE.pdf.

Es-Souni, M., & Fischer-Brandies, H. 2004. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Analytical and Bioanalytical Chemistry, 381(3), pp. 557-567.

Field, C., Ichim, I., Swain, M.V., Chan, E., Darendeliler, M.A., Li, W., & Lig, Q. 2009. Mechanical responses to orthodontic loading: A 3-dimensional finite element multi-tooth model. American Journal of Orthodontics and Dentofacial Orthopedics., 135(2), pp. 174-181.

Fuck, L.M., & Drescher, D. 2010. Force Systems in the Initial Phase of Orthodontic Treatment: A Comparison of Different Levelling Archwires. Journal of Orofacial Orthopaedics, 67(1), pp. 6-18.

Fuck, L.M., Wiechmann, D., & Drescher, D. 2007. Comparison of the Initial Orthodontic Force Systems Produced by a New Lingual Bracket System and a Straight-Wire Appliance. Journal of Orofacial Orthopaedics, 66(5), pp. 363-376.

Hisham, M., Badawia, R., Toogoodb, W., Jason, P.R., Heod, C.G., & Paul, W.M. 2009. Three-dimensional orthodontic force measurements. American Journal of Orthodontics and Dentofacial Orthopedics., 136(4), pp. 518-528.

Kojimaa, Y., & Fukuib, H. 2010. Numeric simulations of en masse space closure with sliding mechanics. American Journal of Orthodontics and Dentofacial Orthopedics., 138(6).

Lagoudas, D.C. 2008. Shape Memory Alloys, Modeling and Engineering Applications.Teksas: Springer.

Lapatki, B.G., Bartholomeyczik, J., Ruther, P., Jonas, I.E., & Paul, O. 2007. Smart Bracket for Multi-dimensional Force and Moment Measurement. Journal of Dental Research, 86, pp. 73-78.

Lapatki, B.G., & Paul, O. 2009. Smart Brackets for 3D-Force-Moment Measurements in Orthodontic Research and Therapy: Developmental Status and Prospects. Journal of Orofacial Orthopaedics, 68(5), pp. 377-396.

Milczewski, M.S., Martelli, C., Canning, J., Stevenson, M., Simoes, J., & Kalinowski, H. 2007. Measurement of orthodontic forces using polymer PCF. In: Optical Internet, 32nd Australian Conference on Optical Fibre Technology, COIN-ACOFT Joint International Conference.

Noda, T., Okamoto, Y., & Hamanaka, H. 1993. . J. Jpn Orthod Soc, 52(2), pp. 154-160.

Norman, D.P., Carlos, N.E., Pacheco, M.C., Thomé, G., & Pereira, J. 2010. 3D simulation of orthodontic tooth movement. J. Orthod., 1(5), pp. 98-108.

Proffit, W.R. 2007. Contemporary orthodontics.St. Louis: Elsevier, Mosby, pp. 359-394.

Qian, Y., Fan, Y., Liu, Z., & Zhang, M. 2008. Numerical simulation of tooth movement in a therapy period, pp. 48-52.

Scheid, R.C., & Weiss, G. 2012. Woelfels Denatal Anatomy.Lippincott Williams & Wilkins.

Sifakakis, I., Pandis, N., Makou, M., Eliades, T., & Bourauel, C. 2009. Forces and moments on posterior teeth generated by incisor intrusion biomechanics generated by incisor intrusion biomechanics. Orthod Craniofac Res., 12(4), pp. 305-11.

Šestak, P., Černy, M., & Pokluda, J. 2009. Influence of compound twinning on Youngs moduli in NiTi martensite.Retrieved from http://www.esomat.org

Their, M., Treppmann, D., Drescher, D., & Boureaul, C. 2004. Transformation characteristics and related deformation behaviour in orthodontic NiTi wire. Journal of Materials Science: Materials in Medicine, 3, pp. 229-233.

Todorović, A., Radović, K., Grbović, A., Rudolf, R., Maksimović, I., & Stamenković, D. 2010. Stress analysis of a unilateral complex partial denture using the finite-element method. Materijali i tehnologije, 44(1), pp. 41-47.

Toms, S.R., & Eberhardt, A.W. 2003. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. American Journal of Orthodontics and Dentofacial Orthopedics., 123(6), pp. 657-65. pmid:12806346

Published
2013/06/11
Section
Review Papers