Existence of a solution for a general order boundary value problem using the Leray-Schauder fixed point theorem

Keywords: fixed point, boundary value problem, Leray-Schauder fixed point theorem

Abstract


Introduction/purpose: This paper illustrates the existence of a generic Green’s function for a boundary value problem of arbitrary order that appears in many phenomena of heat convection, e.g. in the atmosphere, in the oceans, and on the Sun’s surface.

Methods: A fixed point theorem in the Leray-Schauder form has been used to establish the existence of a fixed point in the problem.

Results: The existence of a solution has been shown for an arbitrary order of the problem. Some practical examples are proposed.

Conclusions: The boundary problem has a solution for an arbitrary order n. 

References

Ahmad B. & Ntouyas, S.K. 2012. A study of higher-order nonlinear ordinary differential equations with four-point nonlocal integral boundary conditions. Journal of Applied Mathematics and Computing, 39, pp.97-108. Available at: https://doi.org/10.1007/s12190-011-0513-0.

Bekri Z. & Benaicha, S. 2018. Nontrivial solution of a nonlinear sixth-order boundary value problem. Waves, Wavelets and Fractals, 4(1), pp.10-18. Available at: https://doi.org/10.1515/wwfaa-2018-0002.

Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability. New York, NY: Dover. Online ISBN: 780486319209.

Deimling, K. 1985. Nonlinear Functional Analysis. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-662-00547-7. Online ISBN: 978-3-662-00547-7.

Fabiano, N., Nikolić, N., Shanmugam, T., Radenović, S. & Čitaković, N. 2020. Tenth order boundary value problem solution existence by fixed point theorem. Journal of Inequalities and Applications, art.number:166. Available at: https://doi.org/10.1186/s13660-020-02429-2.

Isac, G. 2006. Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities. Boston, MA: Springer. Available at: https://doi.org/10.1007/0-387-32900-5. Online ISBN: 978-0-387-32900-0.

Ma, R. 2000. Existence and uniqueness theorems for some fourth-order nonlinear boundary value problems. International Journal of Applied Mathematics and Computer Science, 23, art.ID:739631. Available at: https://doi.org/10.1155/S0161171200003057.

Shanmugam, T., Muthiah, M. & Radenović, S. 2019. Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem. Axioms, 8(4), art.number:129. Available at: https://doi.org/10.3390/axioms8040129.

Zvyagin, V.G. & Baranovskii, E.S. 2010. Topological degree of condensing multi-valued perturbations of the (S)+-class maps and its applications. Journal of Mathematical Sciences, 170, pp.405-422. Available at: https://doi.org/10.1007/s10958-010-0094-8.

Published
2021/03/22
Section
Original Scientific Papers