Beta functions in the Quantum Field Theory

  • Nicola Fabiano University of Belgrade, “Vinča” Institute of Nuclear Sciences - Institute of National Importance for the Republic of Serbia, Belgrade, Republic of Serbia https://orcid.org/0000-0003-1645-2071
Keywords: Quantum Electrodynamics, Quantum Chromodynamics, Quantum Field Theory, renormalization group, beta function

Abstract


Introduction/purpose: The running of the coupling constant in various Quantum Field Theories and a possible behaviour of the beta function are illustrated.

Methods: The Callan–Symanzik equation is used for the study of the beta function evolution.

Results: Different behaviours of the coupling constant for high energies are observed for different theories. The phenomenon of asymptotic freedom is of particular interest.

Conclusions: Quantum Electrodynamics (QED) and Quantum Chromodinamics (QCD) coupling constants have completely different behaviours in the regime of high energies. While the first one diverges for finite energies, the latter one tends to zero as energy increases. This QCD phenomenon is called asymptotic freedom.

References

Callan, C.G. 1970. Broken Scale Invariance in Scalar Field Theory. Physical Review D, 2(8), pp.1541-1547. Available at: https://doi.org/10.1103/PhysRevD.2.1541

Coleman, S. & Weinberg, E. 1973. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Physical Review D, 7(6), pp.1888-1910. Available at: https://doi.org/10.1103/PhysRevD.7.1888

Fabiano, N. 2021. Quantum electrodynamics divergencies. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.656-675. Available at: https://doi.org/10.5937/vojtehg69-30366

Glashow, S. 1959. The renormalizability of vector meson interactions. Nuclear Physics, 10(February–May), pp.107-117. Available at: https://doi.org/10.1016/0029-5582(59)90196-8

Gross, D.J. & Wilczek F. 1973. Asymptotically Free Gauge Theories. I. Physical Review D, 8(10), pp.3633-3652. Available at: https://doi.org/10.1103/PhysRevD.8.3633

Landau, L.D., Abrikosov, A.A. & Khalatnikov, I.M. 1954. Dokl. Akad. Nauk SSSR, 95, 497, 773, 1177 (in Russian).

Landau, L.D. & Pomeranchuk, I.Ya. 1955. Dokl. Akad. Nauk SSSR, 102, 489 (in Russian).

Politzer, H.D. 1973. Reliable Perturbative Results for Strong Interactions? Physical Review Letters, 30(26) pp.1346-1349. Available at: https://doi.org/10.1103/PhysRevLett.30.1346

Salam, A. & Ward, J.C. 1959. Weak and electromagnetic interactions. Il Nuovo Cimento, 11(4), pp.568-577. Available at: https://doi.org/10.1007/BF02726525

Symanzik, K. 1970. Small distance behaviour in field theory and power counting. Communications in Mathematical Physics, 18(3), pp.227-246. Available at: https://doi.org/10.1007/bf01649434

Symanzik, K. 1971. Small-distance-behaviour analysis and Wilson expansions. Communications in Mathematical Physics, 23(1), pp.49-86. Available at: https://doi.org/10.1007/BF01877596

Weinberg, S. 1967. A Model of Leptons. Physical Review Letters, 19(21), pp.1264-1266. Available at: https://doi.org/10.1103/PhysRevLett.19.1264

Weinberg, S. 1973. New Approach to the Renormalization Group. Physical Review D, 8(10), pp.3497-3509. Available at: https://doi.org/10.1103/PhysRevD.8.3497

Yang, C.N. & Mills, R. 1954. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96(1), pp.191-195. Available at: https://doi.org/10.1103/PhysRev.96.191

Yukawa, H. 1935. On the interaction of elementary particles. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 17, pp.48-75. Available at: https://doi.org/10.11429/ppmsj1919.17.0_48

Published
2022/01/05
Section
Review Papers