Saddle point approximation to higher order

  • Nicola Fabiano University of Belgrade, ”Vinča” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Belgrade, Republic of Serbia https://orcid.org/0000-0003-1645-2071
  • Nikola Mirkov University of Belgrade, ”Vinča” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Belgrade, Republic of Serbia https://orcid.org/0000-0002-3057-9784
Keywords: saddle point approximation, Stirling’s formula, Quantum Field Theory

Abstract


Introduction/purpose: Saddle point approximation has been considered in the paper.

Methods: The saddle point method is used in several different fields of mathematics and physics. Several terms of the expansion for the factorial function have been explicitely computed.

Results: The integrals estimated in this way have values close to the exact one.

Conclusions: Higher order corrections are not negligible even when requiring moderate levels of precision.

References

Brillouin, L. 1926. La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives. Comptes Rendus de l’Académie des Sciences, 183, pp.24-26.

Daniels, H.E. 1954. Saddlepoint Approximations in Statistics. The Annals of Mathematical Statistics, 25(4), pp.631-650 [online]. Available at: http://www.jstor.org/stable/2236650 [Accessed: 15 January 2022].

Dirac, P.A.M. 1933. The Lagrangian in Quantum Mechanics. Physikalische Zeitschrift der Sowjetunion, 3(1), pp.64–72.

Erdelyi, A. 1956. Asymptotic expansions. New York: Dover Publications, Inc.

Feynman, R.P. 1965. Nobel Lecture. The Development of the Space-Time View of Quantum Electrodynamics. The Nobel Prize, December 11 [online]. Available at: https://www.nobelprize.org/prizes/physics/1965/feynman/lecture/ [Accessed: 15 January 2022].

Kramers,   H.A. 1926. Wellenmechanik und halbzahlige Quantisierung. Zeitschrift für Physik, 39(10-11), pp.828-840. Available at: https://doi.org/10.1007/BF01451751

Laplace, P.S. 1986. Memoir on the Probability of the Causes of Events. Statistical Science, 1(3), pp.364-378 [online]. Available at: http://www.jstor.org/stable/2245476 [Accessed: 15 January 2022].

Moivre, A. de. 1730. Miscellanea analytica de seriebus et quadraturis. London: Tonson & J. Watts.

Moivre, A. de. 1756. The Doctrine of Chances: Or, a Method of Calculating the Probabilities of Events in Play, the third edition. London: A. Millar.

Parisi, G. 1988. Statistical field theory. Boston, MA, USA: Addison-Wesley Pub.Co. ISBN-13: 978-0201059854.

Ramond, P. 1989. Field theory: A modern primer (Frontiers in physics). Boston, MA, USA: Addison-Wesley Pub. Co. ISBN-13: 978-0201157727.

Stirling, J. 1764. Methodus differentialis: sive tractatus de summatione et in- terpolatione serierum infinitarum. London: Prostat apud J. Whiston & B. White.

Wentzel, G. 1926. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Zeitschrift für Physik, 38(6-7), pp.518-529. Available at: https://doi.org/10.1007/BF01397171

Whittaker, E.T. & Watson, G.N. 1927. A Course of Modern Analysis, 4th edition. Cambridge University Press. ISBN-13: 978-0521091893.

Published
2022/03/19
Section
Review Papers