From the early days of unmanned aerial vehicles (UAVS) to their integration into wireless networks
Abstract
Introduction/purpose: This paper provides an overview of Unmanned Aerial Vehicles (UAVs) from their early days to their integration into modern wireless networks.
Methods: It analyzes, synthesizes and compares the UAVs development technologies throughout their history with significant aspects of their integration in wireless communication networks.
Results: Important aspects of wireless communications as one of the key technologies for UAVs are presented. Next, energy efficiency as a research path for UAVs is considered. The paper also emphasizes the present state in this area as well as what the future of UAVs in communications will be.
Conclusion: UAVs are important not only for widespread military usage in various combat operations and warfare environment, but also for other purposes such as their integration in 5G networks.
References
-3GPP. 2017. Technical Specification Group Radio Access Network: Study on enhanced LTE Support for Aerial Vehicle“, document 3GPP TR 36.777 VIS.O.O. [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3231 [Accessed: 15 December 2020].
Afonso, L., Souto, N., Sebastiao, P., Ribeiro, M., Tavares, T. & Marinheiro, R. 2016. Cellular for the skies: Exploiting mobile network infrastructure for low altitude air-to-ground communications. IEEE Aerospace and Electronic Systems Magazine, 31(8), pp.4-11. Available at: https://doi.org/10.1109/MAES.2016.150170.
Bekmezci, I., Sahingoz, O.K. & Temel, Ş. 2013. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), pp.1254-1270. Available at: https://doi.org/10.1016/j.adhoc.2012.12.004.
Campion, M., Ranganathan, P. & Faruque, S. 2018. A Review and Future Directions of UAV Swarm Communication Architectures. In: IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, pp.903-908, May 3-5. Available at: https://doi.org/10.1109/EIT.2018.8500274.
Ferranti, L., Cuomo, F., Colonnese, S. & Melodia, T. 2018. Drone Cellular Networks: Enhancing the Quality Of Experience of video streaming applications. Ad Hoc Networks, 78, pp.1-12. Available at: https://doi.org/10.1016/j.adhoc.2018.05.003.
Goddemeier, N., Daniel, K. & Wietfeld, C. 2010. Coverage evaluation of wireless networks for unmanned aerial systems. In: 2010 IEEE Globecom Workshops Conference, Miami, FL, USA, pp.1760-1765, December 6-10. Available at: https://doi.org/10.1109/GLOCOMW.2010.5700244.
Gonzalez, F., Walker, R., Rutherford, N. & Turner, C. 2011. Assessment of the suitability of public mobile data networks for aircraft telemetry and control purposes. Progress in Aerospace Sciences, 47(3), pp.240-248. Available at: https://doi.org/10.1016/j.paerosci.2010.08.001.
Hayat, S., Yanmaz, E. & Muzaffar, R. 2016. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, 18(4), pp.2624-2661. Available at: https://doi.org/10.1109/COMST.2016.2560343.
-ITU (International Telecommunication Union). 2009. Characteristics of Unmanned Aircraft Systems and Spectrum Requirements to Support their Safe Operation in Non-Segregated Airspace, Report M.2171 [online]. Available at: https://www.itu.int/pub/R-REP-M.2171/en [Accessed: 15 December 2020].
Li, B., Fei, Z. & Zhang, Y. 2019. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet of Things Journal, 6(2), pp.2241-2263. Available at: https://doi.org/10.1109/JIOT.2018.2887086.
Li, K., Ni, W., Wang, X., Liu, R.P., Kanhere, S.S. & Jha, S. 2016. Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE Transactions on Mobile Computing, 15(6), pp.1377-1386. Available at: https://doi.org/10.1109/TMC.2015.2467381.
Milicevic, Z., & Bakmaz, B. 2020. Drone Communications in 5G Network Environment. In: Bojkovic, S.Z., Milovanovic, A.D. & Fowdur, P.T. (Eds.) 5G Multimedia Communication:Technology, Services, and Deployment, Chapter X, pp.193-207. CRC Press, Taylor and Francis Group [online]. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003096450-10/drone-communications-5g-network-environment-zoran-milicevic-bojan-bakmaz [Accessed: 18.02.2019]. ISBN: 9781003096450.
Saleem, Y., Rehmani, M.H. & Zeadally, S. 2015. Integration of cognitive radio technology with unmanned aerial vehicles: issues, opportunities, and future research challenges. Journal of Network and Computer Applications, 50, pp.15-31. Available at: https://doi.org/10.1016/j.jnca.2014.12.002.
-Wikimedia Commons. 2021a. File:Louis Charles Breguet.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:Louis_Charles_Breguet.jpg [Accessed: 15 August 2021].
-Wikimedia Commons. 2021b. File:Charles Robert Richet nobel.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:Charles_Robert_Richet_nobel.jpg [Accessed: 15 August 2021].
-Wikimedia Commons. 2021c. File:Kettering-bug-1.jpeg [online]. Available at: https://commons.wikimedia.org/wiki/File:Kettering-bug-1.jpeg [Accessed: 15 August 2021].
-Wikimedia Commons. 2021d. File:Lockheed Sr-71.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:Lockheed_Sr-71.jpg [Accessed: 15 August 2021].
-Wikimedia Commons. 2021e. File:RQ-2 Pioneer on launch rail 1.JPEG [online]. Available at: https://commons.wikimedia.org/wiki/File:RQ-2_Pioneer_on_launch_rail_1.JPEG [Accessed: 15 August 2021].
-Wikimedia Commons. 2021f. File:RQ-11 Raven 1.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:RQ-11_Raven_1.jpg [Accessed: 15 August 2021].
-Wikipedia. 2021. File:Archibal-Low.jpg [online]. Available at: https://en.wikipedia.org/wiki/File:Archibal-Low.jpg [Accessed: 15 August 2021].
Zeng, Y., Lyu, J. & Zhang, R. 2018. Cellular-connected UAV: Potential, challenges, and promising technologies. IEEE Wireless Communications, 26(1), pp.120-127. Available at: https://doi.org/10.1109/MWC.2018.1800023.
Zhan, C., Zeng, Y. & Zhang, R. 2018. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wireless Communications Letters, 7(3), pp.328-331. Available at: https://doi.org/10.1109/LWC.2017.2776922.
Zieliński, Z., WFrona, K., Furtak, J. & Chudzikiewicz, J. 2021. Reliability and Fault Tolerance Solutions for MIoT. IEEE Communications Magazine, 59(2), pp.36-42. Available at: https://doi.org/10.1109/MCOM.001.2000940.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).