From the early days of unmanned aerial vehicles (UAVS) to their integration into wireless networks

Keywords: unmanned aerial vehicles (UAVs), drone swarm, Military Internet of Things (MIoT), bespilotne letelice (BL), roj bespilotnih letelica, vojne internet stvari

Abstract


Introduction/purpose: This paper provides an overview of Unmanned Aerial Vehicles (UAVs) from their early days to their integration into modern wireless networks.

Methods: It analyzes, synthesizes and compares the UAVs development technologies throughout their history with significant aspects of their integration in wireless communication networks.

Results: Important aspects of wireless communications as one of the key technologies for UAVs are presented. Next, energy efficiency as a research path for UAVs is considered. The paper also emphasizes the present state in this area as well as what the future of UAVs in communications will be.

Conclusion: UAVs are important not only for widespread military usage in various combat operations and warfare environment, but also for other purposes such as their integration in 5G networks.

References

-3GPP. 2017. Technical Specification Group Radio Access Network: Study on enhanced LTE Support for Aerial Vehicle“, document 3GPP TR 36.777 VIS.O.O. [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3231 [Accessed: 15 December 2020].

Afonso, L., Souto, N., Sebastiao, P., Ribeiro, M., Tavares, T. & Marinheiro, R. 2016. Cellular for the skies: Exploiting mobile network infrastructure for low altitude air-to-ground communications. IEEE Aerospace and Electronic Systems Magazine, 31(8), pp.4-11. Available at: https://doi.org/10.1109/MAES.2016.150170.

Bekmezci, I., Sahingoz, O.K. & Temel, Ş. 2013. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), pp.1254-1270. Available at: https://doi.org/10.1016/j.adhoc.2012.12.004.

Campion, M., Ranganathan, P. & Faruque, S. 2018. A Review and Future Directions of UAV Swarm Communication Architectures. In: IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, pp.903-908, May 3-5. Available at: https://doi.org/10.1109/EIT.2018.8500274.

Ferranti, L., Cuomo, F., Colonnese, S. & Melodia, T. 2018. Drone Cellular Networks: Enhancing the Quality Of Experience of video streaming applications. Ad Hoc Networks, 78, pp.1-12. Available at: https://doi.org/10.1016/j.adhoc.2018.05.003.

Goddemeier, N., Daniel, K. & Wietfeld, C. 2010. Coverage evaluation of wireless networks for unmanned aerial systems. In: 2010 IEEE Globecom Workshops Conference, Miami, FL, USA, pp.1760-1765, December 6-10. Available at: https://doi.org/10.1109/GLOCOMW.2010.5700244.

Gonzalez, F., Walker, R., Rutherford, N. & Turner, C. 2011. Assessment of the suitability of public mobile data networks for aircraft telemetry and control purposes. Progress in Aerospace Sciences, 47(3), pp.240-248. Available at: https://doi.org/10.1016/j.paerosci.2010.08.001.

Hayat, S., Yanmaz, E. & Muzaffar, R. 2016. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, 18(4), pp.2624-2661. Available at: https://doi.org/10.1109/COMST.2016.2560343.

-ITU (International Telecommunication Union). 2009. Characteristics of Unmanned Aircraft Systems and Spectrum Requirements to Support their Safe Operation in Non-Segregated Airspace, Report M.2171 [online]. Available at: https://www.itu.int/pub/R-REP-M.2171/en [Accessed: 15 December 2020].

Li, B., Fei, Z. & Zhang, Y. 2019. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet of Things Journal, 6(2), pp.2241-2263. Available at: https://doi.org/10.1109/JIOT.2018.2887086.

Li, K., Ni, W., Wang, X., Liu, R.P., Kanhere, S.S. & Jha, S. 2016. Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE Transactions on Mobile Computing, 15(6), pp.1377-1386. Available at: https://doi.org/10.1109/TMC.2015.2467381.

Milicevic, Z., & Bakmaz, B. 2020. Drone Communications in 5G Network Environment. In: Bojkovic, S.Z., Milovanovic, A.D. & Fowdur, P.T. (Eds.) 5G Multimedia Communication:Technology, Services, and Deployment, Chapter X, pp.193-207. CRC Press, Taylor and Francis Group [online]. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003096450-10/drone-communications-5g-network-environment-zoran-milicevic-bojan-bakmaz [Accessed: 18.02.2019]. ISBN: 9781003096450.

Saleem, Y., Rehmani, M.H. & Zeadally, S. 2015. Integration of cognitive radio technology with unmanned aerial vehicles: issues, opportunities, and future research challenges. Journal of Network and Computer Applications, 50, pp.15-31. Available at: https://doi.org/10.1016/j.jnca.2014.12.002.

-Wikimedia Commons. 2021a. File:Louis Charles Breguet.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:Louis_Charles_Breguet.jpg [Accessed: 15 August 2021].

-Wikimedia Commons. 2021b. File:Charles Robert Richet nobel.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:Charles_Robert_Richet_nobel.jpg [Accessed: 15 August 2021].

-Wikimedia Commons. 2021c. File:Kettering-bug-1.jpeg [online]. Available at: https://commons.wikimedia.org/wiki/File:Kettering-bug-1.jpeg [Accessed: 15 August 2021].

-Wikimedia Commons. 2021d. File:Lockheed Sr-71.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:Lockheed_Sr-71.jpg [Accessed: 15 August 2021].

-Wikimedia Commons. 2021e. File:RQ-2 Pioneer on launch rail 1.JPEG [online]. Available at: https://commons.wikimedia.org/wiki/File:RQ-2_Pioneer_on_launch_rail_1.JPEG [Accessed: 15 August 2021].

-Wikimedia Commons. 2021f. File:RQ-11 Raven 1.jpg [online]. Available at: https://commons.wikimedia.org/wiki/File:RQ-11_Raven_1.jpg [Accessed: 15 August 2021].

-Wikipedia. 2021. File:Archibal-Low.jpg [online]. Available at: https://en.wikipedia.org/wiki/File:Archibal-Low.jpg [Accessed: 15 August 2021].

Zeng, Y., Lyu, J. & Zhang, R. 2018. Cellular-connected UAV: Potential, challenges, and promising technologies. IEEE Wireless Communications, 26(1), pp.120-127. Available at: https://doi.org/10.1109/MWC.2018.1800023.

Zhan, C., Zeng, Y. & Zhang, R. 2018. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wireless Communications Letters, 7(3), pp.328-331. Available at: https://doi.org/10.1109/LWC.2017.2776922.

Zieliński, Z., WFrona, K., Furtak, J. & Chudzikiewicz, J. 2021. Reliability and Fault Tolerance Solutions for MIoT. IEEE Communications Magazine, 59(2), pp.36-42. Available at: https://doi.org/10.1109/MCOM.001.2000940.

Published
2021/10/28
Section
Review Papers