A different approach to b(αn,βn)-hypermetric spaces
Abstract
Introduction/purpose: The aim of this paper is to present the concept of b(αn,βn)-hypermetric spaces.
Methods: Conventional theoretical methods of functional analysis.
Results: This study presents the initial results on the topic of b(αn,βn)-hypermetric spaces. In the first part, we generalize an n-dimensional (n ≥ 2) hypermetric distance over an arbitrary non-empty set X. The b(αn,βn)-hyperdistance function is defined in any way we like, the only constraint being the simultaneous satisfaction of the three properties, viz, non-negativity and positive-definiteness, symmetry and (αn, βn)-triangle inequality. In the second part, we discuss the concept of (αn, βn)-completeness, with respect to this b(αn,βn)-hypermetric, and the fixed point theorem which plays an important role in applied mathematics in a variety of fields.
Conclusion: With proper generalisations, it is possible to formulate well-known results of classical metric spaces to the case of b(αn,βn)-hypermetric spaces.
References
Agarwal, R.P., Karapinar, E, O’Regan, D. & Roldán-López-de-Hierro, A.F. 2015. Fixed Point Theory in Metric Type Spaces. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-24082-4. ISBN: 978-3-319-24082-4.
Bakhtin, I. 1989. The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp.26-37.
Berinde, V. 1993. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory, 3(9), pp.3-9 [online]. Available at: https://www.researchgate.net/profile/Vasile-Berinde/publication/267016246_Generalized_contractions_in_quasimetric_spaces/links/559a0dd908ae5d8f39364ab8/Generalized-contractions-in-quasimetric-spaces.pdf [Accessed: 1 December 2021].
Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1, pp.5-11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 1 December 2021].
Debnath, P., Konwar, N. & Radenović, S. 2021. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Springer Verlag, Singapore. ISBN-13: 978-9811648953.
Dehghan Nezhad, A. & Aral, Z. 2011. The topology of GB-metric spaces. International Scholarly Research Notices, art.ID:523453. Available at: https://doi.org/10.5402/2011/523453
Dehghan Nezhad, A., Forough, A., Mirkov, N. & Radenović, S. 2021. A new version of Un-hypermetric space results. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.562-577. Available at: https://doi.org/10.5937/vojtehg69-32197
Dehghan Nezhad, A. & Khajuee, N. 2013. Some new results on complete Un-metric space. Journal of Nonlinear Sciences and Applications, 6(3), pp.216-226. Available at: http://dx.doi.org/10.22436/jnsa.006.03.07
Dehghan Nezhad, A., Khajuee, N. & Mustafa, Z. 2017. Some new results on Universal metric spaces. Thai Journal of Mathematics, 15(2), pp.429-449 [online]. Available at: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/623
/>[Accessed: 1 December 2021].
Dehghan Nezhad, A. & Mazaheri, H. 2010. New results in G-best approximation in G-metric spaces. Ukrainian Mathematical Journal, 62(4), pp.648-654. Available at: https://doi.org/10.1007/s11253-010-0377-8
Dhage, B.C., Pathan, A.M. & Rhoades, B.E. 2000. A general existence principle for fixed point theorems in d-metric spaces. International Journal of Mathematics and Mathematical Sciences, 23(7), art.ID:695952, pp.441-448. Available at: https://doi.org/10.1155/S0161171200001587
Gähler, S. 1963. 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4), pp.115-148. Available at: https://doi.org/10.1002/mana.19630260109
Kamran, T., Samreen, M. & UL Ain, Q. 2017. A Generalization of b-Metric Space and Some Fixed Point Theorems. Mathematics, 5(2), art.number:19, pp.1-7. Available at: https://doi.org/10.3390/math5020019
Khan, K.A. 2012. On the possibitity of n-topological spaces. International Journal of Mathematical Archive, 3(7), pp.2520-2523 [online]. Available at: http://www.ijma.info/index.php/ijma/article/view/1442 [Accessed: 1 December 2021].
Khan, K.A. 2014. Generalized n-metric spaces and fixed point theorems. Journal of Nonlinear and Convex Analysis, 15(6), pp.1221-1229 [online]. Available at: http://www.yokohamapublishers.jp/online2/jncav15.html [Accessed: 1 December 2021].
Kirk, W. & Shahzad, N. 2014. Fixed Point Theory in Distance Spaces. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-10927-5. ISBN: 978-3-319-10927-5
Mustafa, Z. & Sims, B. 2003. Some remarks concerning D-metric spaces. In: Proceeding of the International Conferences on Fixed Point Theory and Applications, Valencia (Spain), pp.189-198, July 13-18. Available at: https://carma.edu.au/brailey/Research_papers/Some%20Remarks%20Concerning%20D%20-%20Metric%20Spaces.pdf [Accessed: 10 May 2021].
Mustafa, Z. & Sims, B. 2006. A new approach to generalized metric spaces. Journal of Nonlinear Convex Analysis, 7(2), pp.289-297 [online]. Available at: https://carma.edu.au/brailey/Research_papers/A%20new%20Approach%20to%20Generalized%20Metric%20Spaces.pdf [Accessed: 10 May 2021].
Todorčević, V. 2019. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer Nature Switzerland AG. Available at: https://doi.org/10.1007/978-3-030-22591-9. ISBN: 978-3-030-22591-9
Younis, M., Singh, D., Altun, I. & Chauhan, V. 2021a. Graphical structure of extended b-metric spaces: an application to the transverse oscillations of a homogeneous bar. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, art.ID:000010151520200126. Available at: https://doi.org/10.1515/ijnsns-2020-0126
Younis, M., Singh, D. & Abdou, A.N.A. 2021b. A fixed point approach for tuning circuit problem in dislocated b-metric spaces. Mathematical Methods in the Applied Sciences, 2021, pp.1-20. Available at: https://doi.org/10.1002/mma.7922
Younis, M., Singh, D. & Shi, L. 2021c. Revisiting graphical rectangular b-metric spaces. Asian-European Journal of Mathematics, 2021, art.number:2250072. Available at: https://doi.org/10.1142/S1793557122500723
Younis, M. & Singh, D. 2021. On the existence of the solution of Hammerstein integral equations and fractional differential equations. Journal of Applied Mathematics and Computing, 2021. Available at: https://doi.org/10.1007/s12190-021-01558-1
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).