A different approach to b(αn,βn)-hypermetric spaces

Keywords: b(αn, βn) hypermetric spaces, G-metric, fixed-point

Abstract


Introduction/purpose: The aim of this paper is to present the concept of b(αn,βn)-hypermetric spaces.
Methods: Conventional theoretical methods of functional analysis.
Results: This study presents the initial results on the topic of b(αn,βn)-hypermetric spaces. In the first part, we generalize an n-dimensional (n ≥ 2) hypermetric distance over an arbitrary non-empty set X. The b(αn,βn)-hyperdistance function is defined in any way we like, the only constraint being the simultaneous satisfaction of the three properties, viz, non-negativity and positive-definiteness, symmetry and (αn, βn)-triangle inequality. In the second part, we discuss the concept of (αn, βn)-completeness, with respect to this b(αn,βn)-hypermetric, and the fixed point theorem which plays an important role in applied mathematics in a variety of fields.
Conclusion: With proper generalisations, it is possible to formulate well-known results of classical metric spaces to the case of b(αn,βn)-hypermetric spaces.

References

Agarwal, R.P., Karapinar, E, O’Regan, D. & Roldán-López-de-Hierro, A.F. 2015. Fixed Point Theory in Metric Type Spaces. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-24082-4. ISBN: 978-3-319-24082-4.

Bakhtin, I. 1989. The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp.26-37.

Berinde, V. 1993. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory, 3(9), pp.3-9 [online]. Available at: https://www.researchgate.net/profile/Vasile-Berinde/publication/267016246_Generalized_contractions_in_quasimetric_spaces/links/559a0dd908ae5d8f39364ab8/Generalized-contractions-in-quasimetric-spaces.pdf [Accessed: 1 December 2021].

Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1, pp.5-11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 1 December 2021].

Debnath, P., Konwar, N. & Radenović, S. 2021. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Springer Verlag, Singapore. ISBN-13: 978-9811648953.

Dehghan Nezhad, A. & Aral, Z. 2011. The topology of GB-metric spaces. International Scholarly Research Notices, art.ID:523453. Available at: https://doi.org/10.5402/2011/523453

Dehghan Nezhad, A., Forough, A., Mirkov, N. & Radenović, S. 2021. A new version of Un-hypermetric space results. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.562-577. Available at: https://doi.org/10.5937/vojtehg69-32197

Dehghan Nezhad, A. & Khajuee, N. 2013. Some new results on complete Un-metric space. Journal of Nonlinear Sciences and Applications, 6(3), pp.216-226. Available at: http://dx.doi.org/10.22436/jnsa.006.03.07

Dehghan Nezhad, A., Khajuee, N. & Mustafa, Z. 2017. Some new results on Universal metric spaces. Thai Journal of Mathematics, 15(2), pp.429-449 [online]. Available at: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/623 
/>[Accessed: 1 December 2021].

Dehghan Nezhad, A. & Mazaheri, H. 2010. New results in G-best approximation in G-metric spaces. Ukrainian Mathematical Journal, 62(4), pp.648-654. Available at: https://doi.org/10.1007/s11253-010-0377-8

Dhage, B.C., Pathan, A.M. & Rhoades, B.E. 2000. A general existence principle for fixed point theorems in d-metric spaces. International Journal of Mathematics and Mathematical Sciences, 23(7), art.ID:695952, pp.441-448. Available at: https://doi.org/10.1155/S0161171200001587

Gähler, S. 1963. 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4), pp.115-148. Available at: https://doi.org/10.1002/mana.19630260109

Kamran, T., Samreen, M. & UL Ain, Q. 2017. A Generalization of b-Metric Space and Some Fixed Point Theorems. Mathematics, 5(2), art.number:19, pp.1-7. Available at: https://doi.org/10.3390/math5020019

Khan, K.A. 2012. On the possibitity of n-topological spaces. International Journal of Mathematical Archive, 3(7), pp.2520-2523 [online]. Available at: http://www.ijma.info/index.php/ijma/article/view/1442 [Accessed: 1 December 2021].

Khan, K.A. 2014. Generalized n-metric spaces and fixed point theorems. Journal of Nonlinear and Convex Analysis, 15(6), pp.1221-1229 [online]. Available at: http://www.yokohamapublishers.jp/online2/jncav15.html [Accessed: 1 December 2021].

Kirk, W. & Shahzad, N. 2014. Fixed Point Theory in Distance Spaces. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-10927-5. ISBN: 978-3-319-10927-5

Mustafa, Z. & Sims, B. 2003. Some remarks concerning D-metric spaces. In: Proceeding of the International Conferences on Fixed Point Theory and Applications, Valencia (Spain), pp.189-198, July 13-18. Available at: https://carma.edu.au/brailey/Research_papers/Some%20Remarks%20Concerning%20D%20-%20Metric%20Spaces.pdf [Accessed: 10 May 2021].

Mustafa, Z. & Sims, B. 2006. A new approach to generalized metric spaces. Journal of Nonlinear Convex Analysis, 7(2), pp.289-297 [online]. Available at: https://carma.edu.au/brailey/Research_papers/A%20new%20Approach%20to%20Generalized%20Metric%20Spaces.pdf [Accessed: 10 May 2021].

Todorčević, V. 2019. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer Nature Switzerland AG. Available at: https://doi.org/10.1007/978-3-030-22591-9. ISBN: 978-3-030-22591-9

Younis, M., Singh, D., Altun, I. & Chauhan, V. 2021a. Graphical structure of extended b-metric spaces: an application to the transverse oscillations of a homogeneous bar. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, art.ID:000010151520200126. Available at: https://doi.org/10.1515/ijnsns-2020-0126

Younis, M., Singh, D. & Abdou, A.N.A. 2021b. A fixed point approach for tuning circuit problem in dislocated b-metric spaces. Mathematical Methods in the Applied Sciences, 2021, pp.1-20. Available at: https://doi.org/10.1002/mma.7922

Younis, M., Singh, D. & Shi, L. 2021c. Revisiting graphical rectangular b-metric spaces. Asian-European Journal of Mathematics, 2021, art.number:2250072. Available at: https://doi.org/10.1142/S1793557122500723

Younis, M. & Singh, D. 2021. On the existence of the solution of Hammerstein integral equations and fractional differential equations. Journal of Applied Mathematics and Computing, 2021. Available at: https://doi.org/10.1007/s12190-021-01558-1

Published
2022/01/05
Section
Original Scientific Papers