Synthesis of nanosized metal particles from an aerosol
Abstract
The synthesis of metallic nanoparticles from the precursor solution of salts using the ultrasonic spray pyrolysis method was considered in this work. During the control of process parameters (surface tension and density, the concentration of solution, residence time of aerosol in the reactor, presence of additives, gas flow rate, decomposition temperature of aerosol, type of precursor and working atmosphere) it is possible to guide the process in order to obtain powders with such a morphology which satisfies more complex requirements for the desired properties of advanced engineering materials. Significant advance in the improvement of powder characteristics (lower particles sizes, better spheroidity, higher surface area) was obtained by the application of the ultrasonic generator for the preparation of aerosols. Ultrasonic spray pyrolysis is performed by the action of a powerful source of ultrasound on the corresponding precursor solution forming the aerosol with a constant droplet size, which depends on the characteristics of liquid and the frequency of ultrasound. The produced aerosols were transported into the hot reactor, which enables the reaction to occur in a very small volume of a particle and formation of nanosized powder. Spherical, nanosized particles of metals (Cu, Ag, Au, Co) were produced with new and improved physical and chemical characteristics at the IME, RWTH Aachen University. The high costs associated with small quantities of produced nanosized particles represent a limitation of the USP-method. Therefore, scale up of the ultrasonic spray pyrolysis was performed as a final target in the synthesis of nanosized powder.
References
Bang, J.H., & Suslick, K.S. 2010. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Advanced Materials, 22(10), pp. 1039-1059. doi:10.1002/adma.200904093
BMBF. 2006. Nanotechnology, Innovations for the World in the Future, 52.
Bond, G. 2008. The early History of Catalysis by Gold. Gold Bulletin, 41(3), pp. 235-241. doi:10.1007/BF03214875
Buffat, P., & Borel, J.P. 1976. Size Effect on the Melting Temperature of Gold Particles. Physical Review A, 13(6), pp. 2287-2298. doi:10.1103/PhysRevA.13.2287
Cammer, K. 2009. Nanotechnology: Ten Secrets of Innovation. Metall, 5(63), pp. 214-217.
Dittrich, R., Stopic, S., & Friedrich, B. 2011. Mechanism of Nanogold Formation by Ultrasonic Spray Pyrolysis. . In: Proceeding of EMC 2011, Volume 3: Resources efficiency in the non-ferrous metals industry-optimization and improvement, Duesseldorf. , pp. 1065-1076
Jung, D.S., Park, S.B., & Kang, Y.C. 2010. Design of Particles by Spray Pyrolysis and Recent Progress in its Application. Korean Journal of Chemical Engineering, 27(6), pp. 1621-1645. doi:10.1007/s11814-010-0402-5
Kodas, T., & et al., 2006. Aerosol Method and Apparatus, particulate Products, and electronic Devices made therefrom, US Patent 7128852.
Lüchinger, N., Stark, W., & Halim, S. 2010. Innovations in Health Care via Nanoparticles. GIT Labor-Fachzeitschrift, 1, pp. 89-101.
Matula, G., Bogovic, J., Stopic, S., & Friedrich, B. 2013. Ultrasonic Spray Pyrolysis Equipment for Nanopowder Production- Part 1. Heat Processing, 1, pp. 1-5.
Messing, G.L., Zhang, S., & Jayanthi, G.V. 1993. Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 76(11), pp. 2707-2726. doi:10.1111/j.1151-2916.1993.tb04007.x
Pluym, T.C., Powell, Q.H., Gurav, A.S., Ward, T.L., Kodas, T.T., Wang, L.M., & Glicksman, H.D. 1993. Solid Silver Particle Production by Spray Pyrolysis. Journal of Aerosol Science, 24(3), pp. 383-392. doi:10.1016/0021-8502(93)90010-7
Qi, C. 2008. The Production of Propylene Oxide over nanometer Au Catalysts in the presence of H2 and O2. Gold Bulletin, 41(3), pp. 224-234. doi:10.1007/BF03214874
Raab, C.M., Simkó, M., Fiedeler, U., Nentwich, M., & Gazsó, A. 2008. Synthesis of Nanoparticles and Nanomaterials. Nano Trust Dossiers, 8(11), pp. 1-4.
Rittner, M.N., & Abraham, T. 1998. Nanostructured Materials: An Overiew and Commercial Analysis. Journal of Metals, 1, pp. 37-47.
Rudolf, R., Friedrich, B., Stopic, S., Anzel, I., Tomic, S., & Čolić, M. 2012. Cytotoxicity of Gold Nanoparticles Prepared by Ultrasonic Spray Pyrolysis. Journal of Biomaterials Applications, 5, pp. 195-212.
Stopic, S., Friedrich, B., Volkov, T., & Raic, K. 2010. Mechanism and Kinetics of Nanosilver Formation by Ultrasonic Spray Pyrolysis- Progress Report after a successful up-scaling. Metall, First part, 10, pp. 419-426.
Tsai, S.C., Song, Y.L., Tsai, C.S., Yang, C.C., Chiu, W.Y., & Lin, H.M. 2004. Ultrasonic Spray Pyrolysis for Nanoparticles Synthesis. Journal of Materials Science, 39(11), pp. 3647-3657. doi:10.1023/B:JMSC.0000030718.76690.11
Verhulst, D., Sabacky, B., Spitler, T., & Duyvesteyn, W. 2002. The Altair TiO2 Pigment Process and its Extension into the Field of Nanomaterials. CIM Bulletin, 95, pp. 89-94.
(1999) Retrieved from http://www.prizma.rs/ml/index.php/
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).