A study on integral transforms of the generalized Lommel-Wright function

Keywords: Generalized Lommel-Wright functions J(z), Hankel transfom, K-transform, Wright function, Whittaker function

Abstract


Introduction/purpose: The aim of this article is to establish integral transforms of the generalized Lommel-Wright function.

Methods: These transforms are expressed in terms of the Wright Hypegeometric function.

Results: Integrals involving the trigonometric, generalized Bessel function and the Struve functions are obtained.

Conclusions: Various interesting transforms as the consequence of this method are obtained.

References

Chaurasia, V.B.L. & Pandey, S.C. 2010. On the fractional calculus of generalized
Mittag-Leffler function. SCIENTIA Series A: Mathematical Sciences, 20,
pp.113-122 [online]. Available at: https://citeseerx.ist.psu.edu/viewdoc/downlo
/>ad?doi=10.1.1.399.5089&rep=rep1&type=pdf [Accessed: 9 February 2022].

Choi, J. & Agarwal, P. 2013. Certain unified integrals associated with Bessel
functions. Boundary Value Problems, art.number:95. Available at:
https://doi.org/10.1186/1687-2770-2013-95

Choi, J., Mathur, S. & Purohit, S.D. 2014. Certain new integral formulas involving
the generalized Bessel functions. Bulletin of the Korean Mathematical Society,
51(4), pp.995-1003. Available at: https://doi.org/10.4134/BKMS.2014.51.4.995

Jain, S., Choi, J., Agarwal, P. & Nisar, K.S. 2016. Integrals involving Laguerre
type plynomials and Bessel functions. Far East Journal of Mathematical Sciences
(FJMS), 100(6), pp.965-976. Available at:
https://doi.org/10.17654/MS100060965

Kachhia, K.B. & Prajapati, J.C. 2016. On generalized fractional kinetic equations
involving generalized Lommel-Wright functions. Alexandria Engineering
Journal, 55(3), pp.2953-2957. Available at:
https://doi.org/10.1016/j.aej.2016.04.038

Kiryakova, V.S. 2000. Multiple(multiindex) Mittag-Leffler functions and relations
to generalized fractional calculus. Journal of Computational and Applied Mathematics,
118(1-2), pp.241-259. Available at:
https://doi.org/10.1016/S0377-0427(00)00292-2

Mathai, A.M., Saxena, R.K. & Haubold, H.J. 2010. The H-function: Theory and
Applications. New York, NY: Springer. Available at:
https://doi.org/10.1007/978-1-4419-0916-9

Mathai, A.M. & Saxena, R.K. 1973. Generalized Hypergeometric Functions
with Applications in Statistics and Physical Sciences. Berlin Heidelberg: Springer-
Verlag. Available at: https://doi.org/10.1007/BFb0060468

Menaria, N., Nisar, K.S. & Purohit, S.D. 2016. On a new class of integrals
involving product of generalized Bessel function of the first kind and general class
of polynomials. Acta Universitatis Apulensis, 46, pp.97-105 [online]. Available at:
https://www.emis.de/journals/AUA/pdf/74_1366_aua_2841701.pdf [Accessed: 9
February 2022].

Mondal, S.R. & Nisar, K.S. 2017. Certain unified integral formulas involving the
generalized modified k-Bessel function of first kind. Communications of the Korean
Mathematical Society, 32(1), pp.47-53. Available at:
https://doi.org/10.4134/CKMS.c160017

Paneva-Konovska, J. 2007. Theorems on the convergence of series in generalized
Lommel-Wright functions. Fractional Calculus and Applied Analysis, 10(1),
pp.59-74 [online]. Available at: http://eudml.org/doc/11298 [Accessed: 9 February
2022].

Rainville, E.D. 1960. Special Functions. New York: The Macmillan Company.

Srivastava, H.M. & Daoust, M.C. 1969. Certain generalized Neumann expansions
associated with Kampe-de-Feriet function. Proceedings of the Koninklijke
Nederlandse Akademie van Wetenschappen Series A-Mathematical Sciences,
72(5), pp.449-457.

Srivastava, H.M. & Manocha, H.L. 1984. A treatise on generating functions.
Chichester, West Sussex, England: E. Horwood & New York: Halsted Press. ISBN:
9780853125082.

Whittaker, E.T. & Watson, G.N. 2013. A Course of Modern Analysis, reprint of
the fourth (1927) edition. Cambridge University Press, Cambridge Mathematical
Library. Available at: https://doi.org/10.1017/CBO9780511608759

Published
2022/03/19
Section
Original Scientific Papers