Application of Chebyshev’s inequality in the preliminary feasibility study for constructing a solar thermal power plant

Keywords: probability, random variable, dispersion, mean value, cloudy day, solar radiation, solar thermal power plants

Abstract


Introduction/purpose: This paper examines some of the applications of Chebyshev’s inequality. Using Chebyshev’s inequality, the analysis of a preliminary feasibility study for constructing a solar thermal power plant in the Banja Luka area has been conducted. The goal of the preliminary analysis is to show, without financial investments, if there is a basis for the climate parameters measurement in the area.

Methods: For the known values of the arithmetic means and the standard deviations of the number of cloudy days, the probability of deviation of the number of cloudy days from the mean value was defined by applying Chebyshev’s inequality.

Results: The diagram shows the values of the upper and lower limits of the number of cloudy days that deviate from the expected value with a probability of 50%.

Conclusion: The preliminary assessment of the justification of the realization of a solar thermal power plant justifies the measurements necessary for the analysis and detailed calculation of this type of a plant, because the annual interval of cloudy days is from 94 to 164, or from 26 to 44% in the year.

References

Amidan, B.G., Ferryman, T.A. & Cooley, S.K. 2005. Data Outlier Detection using the Chebyshev Theorem. In: IEEE Aerospace Conference, Big Sky, MT, USA, pp.3814-3819, March 5-12. Available at:  https://doi.org/10.1109/AERO.2005.1559688

Aranđelović, I., Mitrović, D.Z. & Stojanović, V. 2011. Verovatnoća i statistika. Belgrade, Serbia: Zavod za udžbenike (in Serbian).

Bahmani, R., Karimi, H. & Jadid, S. 2020. Stochastic electricity market model in networked microgrids considering demand response programs and renewable energy sources. International Journal of Electrical Power & Energy Systems, 117(art.ID: 105606). Available at: https://doi.org/10.1016/j.ijepes.2019.105606

Biyya, I., Aniba, G. & Maaroufi, M. 2017. Impact of Load and Renewable Energy Uncertainties on Single and Multiple Energy Storage Systems Sizing. In: IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, pp.1-5, April 23-26. Available at: https://doi.org/10.1109/ISGT.2017.8086031

Chen, X. 2011. A New Generalization of Chebyshev Inequality for Random Vectors. arXiv preprint arXiv:0707.0805 [online]. Available at: https://arxiv.org/pdf/0707.0805.pdf [Accessed: 1 March 2022].

Crvenković, Z. & Rajter, D. 1999. Zbirka rešenih zadataka iz verovatnoće i statistike. Novi Sad, Serbia: University of Novi Sad (in Serbian).

Dekking, F.M., Kraaikamp, C., Lopuhaä, H.P. & Meester L.E. 2005. A Modern Introduction to Probability and Statistics. London: Springer-Verlag. Available at: https://doi.org/10.1007/1-84628-168-7

Elazar, S. 1972. Matematička statistika. Sarajevo, Bosnia and Herzegovina: Zavod za izdavanje udžbenika (in Serbian).

Gomez-Munoz, V.M. & Porta-Gandara, M.A. 2002. Local wind patterns for modeling renewable energy systems by means of cluster analysis techniques. Renewable Energy, 25(2), pp.171-182. Available at: https://doi.org/10.1016/S0960-1481(01)00013-1

Hajiagha, S.H.R., Hashemi, S.S., Mahdiraji, H.A. & Azaddel, J. 2015. Multi-period data envelopment analysis based on Chebyshev inequality bounds. Expert Systems with Applications, 42(21), pp.7759-7767. Available at:  https://doi.org/10.1016/j.eswa.2015.06.008

Han, C-Y., Lo, W-T., Chen, K-H., Lee, J-Y., Yeh, C-H., Chen, J-H. 2021. Measurement of Focal Length and Radius of Curvature for Spherical Lenses and Mirrors by Using Digital-Grating Moiré Effect. Photonics, 8(7), art.number:252.  Available at: https://doi.org/10.3390/photonics8070252

Hooshmand, A., Poursaeidi M.H., Mohammadpour, J., Malki, H.A. & Grigoriads, K. 2012. Stochastic Model Predictive Control Method for Microgrid Management. In: IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, pp.1-7, January 16-20. Available at: https://doi.org/10.1109/ISGT.2012.6175660

Jaoude, A.A. 2016. The paradigm of complex probability and Chebyshev’s inequality. Systems Science & Control Engineering, 4(1), pp. 99-137. Available at: https://doi.org/10.1080/21642583.2016.1185044

Jovanović, M., Merkle, M. & Mitrović, D.Z. 2008. Vjerovatnoća i statistika-zbirka riješenih zadataka. Banja Luka, Republic of Srpska, Bosnia and Herzegovina: Faculty of Electrical Engineering (in Serbian).

Lange, K. 2010. Applied Probability. New York, NY, USA: Springer. Available at: https://doi.org/10.1007/978-1-4419-7165-4

Maširević, D.J. & Keglević, N. 2017. Chebyshev’s and Markov’s inequality in probability theory. Osječki matematički list, 17, pp.125-137 [online]. Available at: https://hrcak.srce.hr/file/285086 (in Serbian) [Accessed: 1 March 2022].

Medić, S. 2014. Jensen and Chebyshev inequalities for interval-valued functions. Ph.D. thesis. Novi Sad, Serbia: University of Novi Sad, Faculty of Science (in Serbian) [online]. Available at: https://nardus.mpn.gov.rs/handle/123456789/1892 [Accessed: 1 March 2022].

Mitrović, D.Z. 2007. Primijenjena statistika – Teorija i zadaci. Banja Luka, Republic of Srpska, Bosnia and Herzegovina: University of Banja Luka (in Serbian).

Pupčević, B.M. 2016. Primjena reverzibilnog ciklusa centrifugalnog rashladnog uređaja za konverziju geotermalne i solarne energije u električnu. MA thesis. Banja Luka, Republic of Srpska, Bosnia and Herzegovina: University of Banja Luka, Faculty of Mechanical Engineering (in Serbian).

-Renewable Energy World. 2003. Solar thermal power plants - Technology Fundamentals. Renewable Energy World, June, pp.109-113.

Simonović, V. 1986. Uvod u teoriju verovatnoće i matematičku statistiku. Belgrade, Serbia: Građevinska knjiga (in Serbian).

Stellato, B., Van Parys, B.P.G. & Goulart, P.J. 2017. Multivariate Chebyshev Inequality With Estimated Mean and Variance. The American Statistician, 71(2), pp.123-127. Available at: https://doi.org/10.1080/00031305.2016.1186559

Vasquez Padilla, R. 2011. Simplified Methodology for Designing Parabolic Trough Solar Power Plants. Ph.D. thesis. University of South Florida, ProQuest Dissertations Publishing [online]. Available at: https://www.proquest.com/openview/9f7c10b791b1bef807d4fdb59eec0cee/1?pq-origsite=gscholar&cbl=18750 [Accessed: 1 March 2022].

Wang, R., Xiao, G., Wang, P., Cao, Y., Li&, G., Hao, J. & Zhu, K. 2017. Energy Generation Scheduling in Microgrids Involving Temporal-Correlated Renewable Energy. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, pp.1-6, December 4-8. Available at: https://doi.org/10.1109/GLOCOM.2017.8255069

Yang, C., Liu, J., Zeng, Y. & Xie, G. 2019. Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model. Renewable Energy, 133, pp.433-441. Available at: https://doi.org/10.1016/j.renene.2018.10.062

Published
2022/06/24
Section
Original Scientific Papers